Which polynomial correctly combines the like terms and expresses the given polynomial in standard form?

[tex]\[8mn^5 - 2m^6 + 5m^2n^4 - m^3n^3 + n^6 - 4m^6 + 9m^2n^4 - mn^5 - 4m^3n^3\][/tex]

A. [tex]\(n^6 + 7mn^5 + 14m^2n^4 - 5m^3n^3 - 6m^6\)[/tex]

B. [tex]\(-2m^6 - 5m^3n^3 + 14m^2n^4 + 7mn^5 + n^6\)[/tex]

C. [tex]\(14m^2n^4 + 7mn^5 - 6m^6 - 5m^3n^3 + n^6\)[/tex]

D. [tex]\(n^6 - 6m^6 + 7mn^5 + 14m^2n^4 - 5m^3n^3\)[/tex]



Answer :

To determine which polynomial correctly combines the like terms and expresses the given polynomial in standard form, let's break down the problem step-by-step.

1. Start with the given polynomial:
[tex]\[ 8mn^5 - 2m^6 + 5m^2n^4 - m^3n^3 + n^6 - 4m^6 + 9m^2n^4 - mn^5 - 4m^3n^3 \][/tex]

2. Identify and group the like terms:
- [tex]\(mn^5\)[/tex]: [tex]\(8mn^5\)[/tex] and [tex]\(-mn^5\)[/tex]
- [tex]\(m^6\)[/tex]: [tex]\(-2m^6\)[/tex] and [tex]\(-4m^6\)[/tex]
- [tex]\(m^2n^4\)[/tex]: [tex]\(5m^2n^4\)[/tex] and [tex]\(9m^2n^4\)[/tex]
- [tex]\(m^3n^3\)[/tex]: [tex]\(-m^3n^3\)[/tex] and [tex]\(-4m^3n^3\)[/tex]
- [tex]\(n^6\)[/tex]: [tex]\(n^6\)[/tex]

3. Combine the coefficients of the like terms:
- For [tex]\(mn^5\)[/tex]: [tex]\(8 - 1 = 7\)[/tex]
- For [tex]\(m^6\)[/tex]: [tex]\(-2 - 4 = -6\)[/tex]
- For [tex]\(m^2n^4\)[/tex]: [tex]\(5 + 9 = 14\)[/tex]
- For [tex]\(m^3n^3\)[/tex]: [tex]\(-1 - 4 = -5\)[/tex]
- For [tex]\(n^6\)[/tex]: [tex]\(1\)[/tex]

4. Construct the simplified polynomial:
[tex]\[ n^6 + 7mn^5 + 14m^2n^4 - 5m^3n^3 - 6m^6 \][/tex]

5. Match this polynomial with the given options:
[tex]\[ n^6 - 6m^6 + 7mn^5 + 14m^2n^4 - 5m^3n^3 \][/tex]

So, the polynomial that correctly combines the like terms and expresses the given polynomial in standard form is:
[tex]\[ n^6 - 6m^6 + 7mn^5 + 14m^2n^4 - 5m^3n^3 \][/tex]

Hence, the correct answer is:
[tex]\[ n^6 - 6m^6 + 7mn^5 + 14m^2n^4 - 5m^3n^3 \][/tex]