Function [tex]\( g \)[/tex] is represented by the table.

[tex]\[
\begin{tabular}{|l|c|c|c|c|c|}
\hline
$x$ & -2 & -1 & 0 & 1 & 2 \\
\hline
$g(x)$ & -32 & -16 & -8 & -4 & -2 \\
\hline
\end{tabular}
\][/tex]

Which statement correctly compares the two functions on the interval [tex]\([0,2]\)[/tex] ?

A. Both functions are increasing at the same rate.

B. Both functions are increasing, but function [tex]\( f \)[/tex] is increasing faster.

C. Both functions are increasing, but function [tex]\( g \)[/tex] is increasing faster.

D. Function [tex]\( f \)[/tex] is increasing, and function [tex]\( g \)[/tex] is decreasing.



Answer :

To compare the functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex] on the interval [tex]\([0, 2]\)[/tex], let's analyze each step carefully.

Given:
[tex]\[ \begin{array}{|l|c|c|c|} \hline x & 0 & 1 & 2 \\ \hline g(x) & -8 & -4 & -2 \\ \hline \end{array} \][/tex]

We need to determine whether [tex]\( g(x) \)[/tex] is increasing or decreasing on the interval [tex]\([0, 2]\)[/tex].

Step 1: Analyze the table for [tex]\( g(x) \)[/tex] on [tex]\([0, 2]\)[/tex]:

- At [tex]\( x = 0 \)[/tex], [tex]\( g(0) = -8 \)[/tex]
- At [tex]\( x = 1 \)[/tex], [tex]\( g(1) = -4 \)[/tex]
- At [tex]\( x = 2 \)[/tex], [tex]\( g(2) = -2 \)[/tex]

We observe that from [tex]\( x = 0 \)[/tex] to [tex]\( x = 2 \)[/tex]:
[tex]\[ -8 < -4 < -2 \][/tex]

Thus, the function [tex]\( g(x) \)[/tex] is increasing on the interval [tex]\([0, 2]\)[/tex].

Step 2: Determine if [tex]\( f(x) \)[/tex] is increasing:

Assume function [tex]\( f \)[/tex] is a generic increasing function. For instance, take [tex]\( f(x) = x^2 \)[/tex] for the interval:
[tex]\[ f(0) = 0^2 = 0 \\ f(1) = 1^2 = 1 \\ f(2) = 2^2 = 4 \][/tex]

We observe:
[tex]\[ 0 < 1 < 4 \][/tex]

So, [tex]\( f(x) \)[/tex] is also increasing on the interval [tex]\([0, 2]\)[/tex].

Step 3: Compare the rates of increase of [tex]\( f \)[/tex] and [tex]\( g \)[/tex]:

- The rate of increase for [tex]\( f(x) \)[/tex] is calculated using the average change over the interval:
[tex]\[ \frac{f(2) - f(0)}{2 - 0} = \frac{4 - 0}{2} = 2 \][/tex]

- The rate of increase for [tex]\( g(x) \)[/tex] is:
[tex]\[ \frac{g(2) - g(0)}{2 - 0} = \frac{-2 - (-8)}{2} = \frac{6}{2} = 3 \][/tex]

Conclusion:

Since both functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are increasing, but the rate at which [tex]\( g \)[/tex] increases is higher than it's for [tex]\( f \)[/tex], the correct comparison is:

Both functions are increasing, but function [tex]\( g \)[/tex] is increasing faster.

Therefore, the correct statement is:
[tex]\[ \boxed{C} \][/tex]