Andrew has a cell phone plan that provides 300 free minutes each month for a flat rate of [tex]$19. For any minutes over 300, Andrew is charged $[/tex]0.39 per minute.

Which piecewise function represents the charges based on Andrew's cell phone plan?

A. [tex]\( f(x) = \begin{cases}
19, & x \leq 300 \\
19 + 39x, & x \ \textgreater \ 300
\end{cases} \)[/tex]

B. [tex]\( f(x) = \begin{cases}
19, & x \leq 300 \\
19 + 39(x - 300), & x \ \textgreater \ 300
\end{cases} \)[/tex]

C. [tex]\( f(x) = \begin{cases}
19, & x \leq 300 \\
19 + 39x, & x \ \textgreater \ 300
\end{cases} \)[/tex]

D. [tex]\( f(x) = \begin{cases}
19, & x \leq 300 \\
39x, & x \ \textgreater \ 300
\end{cases} \)[/tex]



Answer :

To solve this problem, we need to clearly define the charges based on Andrew's cell phone plan using a piecewise function.

Let's break down Andrew's cell phone plan:

1. If Andrew uses up to 300 minutes in a month, he only pays a flat rate of [tex]$19. 2. For every minute over 300, Andrew pays an additional $[/tex]0.39 per minute.

Now let's look at the options given to see which one matches this scenario.

### Step-by-step Analysis of Each Option

#### Option A
[tex]\[ f(x) = \begin{cases} 19 & \text{if } x > 300 \\ 19 + 39x & \text{if } x \leq 300 \end{cases} \][/tex]

- This option states that if Andrew uses more than 300 minutes, the cost will be [tex]$19. However, this is incorrect because for more than 300 minutes, additional charges apply. - For \( x \leq 300 \), the function claims the cost is \( 19 + 39x \), which is incorrect because the flat rate of $[/tex]19 applies, not a multiplication.

#### Option B
[tex]\[ f(x) = \begin{cases} 19 & \text{if } x \leq 300 \\ 19 + 0.39(x - 300) & \text{if } x > 300 \end{cases} \][/tex]

- For [tex]\( x \leq 300 \)[/tex], the cost is correctly given as [tex]$19. - For \( x > 300 \), the cost is calculated as the base $[/tex]19 plus [tex]$0.39 for each minute over 300, which is indeed \( 19 + 0.39(x - 300) \). This option looks correct, let's check the rest. #### Option C \[ f(x) = \begin{cases} 19 & \text{if } x \leq 300 \\ 19 + 39x & \text{if } x > 300 \end{cases} \] - For \( x \leq 300 \), the cost is correctly $[/tex]19.
- For [tex]\( x > 300 \)[/tex], the function says the cost is [tex]\( 19 + 39x \)[/tex], which incorrectly multiplies the extra minutes by 39 instead of multiplying by 0.39 per extra minute.

#### Option D
[tex]\[ f(x) = \begin{cases} 19 & \text{if } x \leq 300 \\ 39x & \text{if } x > 300 \end{cases} \][/tex]

- For [tex]\( x \leq 300 \)[/tex], the cost is [tex]$19 which is correct. - For \( x > 300 \), the function says the cost is \( 39x \), which implies multiplying all the minutes by 39, ignoring the initial 300 minutes of $[/tex]19.

### Conclusion
Option B correctly reflects the structure of the cell phone plan. For [tex]\( x \leq 300 \)[/tex], the cost is [tex]$19, and for \( x > 300 \), the cost is the base $[/tex]19 plus $0.39 for each minute over 300. Therefore, the correct piecewise function that represents the charges based on Andrew's cell phone plan is:

[tex]\[ f(x) = \begin{cases} 19 & \text{if } x \leq 300 \\ 19 + 0.39(x - 300) & \text{if } x > 300 \end{cases} \][/tex]

Hence, the correct answer is:

[tex]\[ \boxed{B} \][/tex]