\begin{tabular}{|c|c|c|c|}
\hline
A & B & C & D \\
\hline
3.25 & [tex]$\frac{3}{4}$[/tex] & [tex]$2 \frac{3}{5}$[/tex] & [tex]$\frac{23}{4}$[/tex] \\
\hline
\end{tabular}



Answer :

Sure, let's break down the values from the given table step-by-step to verify the correctness and understand how they are derived.

### Understanding the Values
We need to express each of these mathematical values as numerical decimals.

#### Value [tex]\( A \)[/tex]
- [tex]\( A \)[/tex] is given directly as [tex]\( 3.25 \)[/tex].
- No further conversion is needed here.

#### Value [tex]\( B \)[/tex]
- [tex]\( B \)[/tex] is given as the fraction [tex]\( \frac{3}{4} \)[/tex].
- To convert this fraction to a decimal, we divide the numerator (3) by the denominator (4):

[tex]\[ B = \frac{3}{4} = 0.75 \][/tex]

#### Value [tex]\( C \)[/tex]
- [tex]\( C \)[/tex] is given as the mixed number [tex]\( 2 \frac{3}{5} \)[/tex].
- First, convert the mixed number to an improper fraction and then to a decimal:
[tex]\[ C = 2 + \frac{3}{5} \][/tex]
- Convert [tex]\(\frac{3}{5}\)[/tex] to a decimal by dividing 3 by 5:
[tex]\[ \frac{3}{5} = 0.6 \][/tex]
- Add this to the integer part:
[tex]\[ C = 2 + 0.6 = 2.6 \][/tex]

#### Value [tex]\( D \)[/tex]
- [tex]\( D \)[/tex] is given as the fraction [tex]\( \frac{23}{4} \)[/tex].
- To convert this fraction to a decimal, divide the numerator (23) by the denominator (4):
[tex]\[ D = \frac{23}{4} = 5.75 \][/tex]

### Summarizing the Results
So, the numerical values converted from the given table are:
- [tex]\( A = 3.25 \)[/tex]
- [tex]\( B = 0.75 \)[/tex]
- [tex]\( C = 2.6 \)[/tex]
- [tex]\( D = 5.75 \)[/tex]

These match the previously given results:
[tex]\[ (3.25, 0.75, 2.6, 5.75) \][/tex]

This is our final answer!