Which expression is equivalent to the given expression?

[tex]\[
\frac{\left(3 m^2 n\right)^3}{m n^4}
\][/tex]

A. [tex]\(27 m^4 n\)[/tex]

B. [tex]\(\frac{27 m^5}{n}\)[/tex]

C. [tex]\(9 m^4 n\)[/tex]

D. [tex]\(\frac{9 m^5}{n}\)[/tex]



Answer :

To simplify the given expression:

[tex]\[ \frac{(3m^2 n)^3}{m n^4} \][/tex]

we can follow these steps:

1. Simplify the numerator: Apply the power of a product property [tex]\((ab)^c = a^c b^c\)[/tex]:
[tex]\[ (3m^2 n)^3 = 3^3 (m^2)^3 n^3 = 27m^6 n^3 \][/tex]

So, the expression now looks like:
[tex]\[ \frac{27m^6 n^3}{m n^4} \][/tex]

2. Simplify the fraction by dividing the numerator by the denominator. This involves subtracting the exponents of like bases:
[tex]\[ \frac{27m^6 n^3}{m n^4} = 27 \frac{m^6}{m^1} \frac{n^3}{n^4} = 27 m^{6-1} n^{3-4} = 27 m^5 n^{-1} \][/tex]

3. Rewrite with positive exponents: [tex]\(n^{-1} = \frac{1}{n}\)[/tex], so we have:
[tex]\[ 27 m^5 n^{-1} = \frac{27m^5}{n} \][/tex]

Thus, the simplified expression is:

[tex]\[ \frac{27 m^5}{n} \][/tex]

Therefore, the equivalent expression corresponds to option B.