If [tex]\(a(x) = 2x - 4\)[/tex] and [tex]\(b(x) = x + 2\)[/tex], which of the following expressions produces a quadratic function?

A. [tex]\((a \cdot b)(x)\)[/tex]

B. [tex]\(\left(\frac{a}{b}\right)(x)\)[/tex]

C. [tex]\((a - b)(x)\)[/tex]

D. [tex]\((a + b)(x)\)[/tex]



Answer :

To identify which of the given expressions produces a quadratic function when [tex]\(a(x) = 2x - 4\)[/tex] and [tex]\(b(x) = x + 2\)[/tex], let's evaluate each expression step by step.

1. Product of [tex]\(a(x)\)[/tex] and [tex]\(b(x)\)[/tex]: [tex]\((ab)(x)\)[/tex]

[tex]\[ (ab)(x) = a(x) \cdot b(x) \][/tex]

Substituting the given functions:

[tex]\[ (ab)(x) = (2x - 4) \cdot (x + 2) \][/tex]

Expanding using the distributive property:

[tex]\[ (ab)(x) = 2x(x + 2) - 4(x + 2) \][/tex]

[tex]\[ = 2x^2 + 4x - 4x - 8 \][/tex]

Simplifying:

[tex]\[ (ab)(x) = 2x^2 - 8 \][/tex]

This is a quadratic function because it includes an [tex]\(x^2\)[/tex] term.

2. Quotient of [tex]\(a(x)\)[/tex] and [tex]\(b(x)\)[/tex]: [tex]\(\left(\frac{a}{b}\right)(x)\)[/tex]

[tex]\[ \left(\frac{a}{b}\right)(x) = \frac{a(x)}{b(x)} \][/tex]

Substituting the given functions:

[tex]\[ \left(\frac{a}{b}\right)(x) = \frac{2x - 4}{x + 2} \][/tex]

This is a rational function, not a quadratic function because it does not have an [tex]\(x^2\)[/tex] term as a polynomial.

3. Difference of [tex]\(a(x)\)[/tex] and [tex]\(b(x)\)[/tex]: [tex]\((a - b)(x)\)[/tex]

[tex]\[ (a - b)(x) = a(x) - b(x) \][/tex]

Substituting the given functions:

[tex]\[ (a - b)(x) = (2x - 4) - (x + 2) \][/tex]

Simplifying:

[tex]\[ (a - b)(x) = 2x - 4 - x - 2 \][/tex]

[tex]\[ = x - 6 \][/tex]

This is a linear function because it does not have an [tex]\(x^2\)[/tex] term.

4. Sum of [tex]\(a(x)\)[/tex] and [tex]\(b(x)\)[/tex]: [tex]\((a + b)(x)\)[/tex]

[tex]\[ (a + b)(x) = a(x) + b(x) \][/tex]

Substituting the given functions:

[tex]\[ (a + b)(x) = (2x - 4) + (x + 2) \][/tex]

Simplifying:

[tex]\[ (a + b)(x) = 2x - 4 + x + 2 \][/tex]

[tex]\[ = 3x - 2 \][/tex]

This is a linear function because it does not have an [tex]\(x^2\)[/tex] term.

Therefore, the only expression that produces a quadratic function is [tex]\((ab)(x) = 2x^2 - 8\)[/tex]. Hence:

[tex]\((ab)(x)\)[/tex] is the expression that produces a quadratic function.