Answer :

To factor the quadratic expression [tex]\(3x^2 - 11x - 20\)[/tex], let's follow these steps:

1. Identify the coefficients:
- [tex]\(a = 3\)[/tex] (coefficient of [tex]\(x^2\)[/tex])
- [tex]\(b = -11\)[/tex] (coefficient of [tex]\(x\)[/tex])
- [tex]\(c = -20\)[/tex] (constant term)

2. Set up the factors in the form:
[tex]\[ (Ax + B)(Cx + D) \][/tex]
where [tex]\(A \times C = a\)[/tex] and [tex]\(B \times D = c\)[/tex].

3. Determine the correct pairs:
- Look for pairs of factors of [tex]\(ac\)[/tex] that add up to [tex]\(b\)[/tex]. Here, [tex]\(ac = 3 \times (-20) = -60\)[/tex] and [tex]\(b = -11\)[/tex].

4. Find the correct pair:
- The pair of numbers that multiply to [tex]\(-60\)[/tex] and add up to [tex]\(-11\)[/tex] is [tex]\(4\)[/tex] and [tex]\(-15\)[/tex].

5. Rewrite the middle term:
[tex]\[ 3x^2 - 15x + 4x - 20 \][/tex]

6. Group the terms and factor each group:
[tex]\[ (3x^2 - 15x) + (4x - 20) \][/tex]
[tex]\[ = 3x(x - 5) + 4(x - 5) \][/tex]

7. Factor out the common binomial factor:
[tex]\[ = (3x + 4)(x - 5) \][/tex]

Thus, the factored form of the quadratic expression [tex]\(3x^2 - 11x - 20\)[/tex] is:
[tex]\[ (3x + 4)(x - 5) \][/tex]

So the correct answer is:
[tex]\[ (3x + \boxed{4})(x - \boxed{5}) \][/tex]