What is the sum of the matrices shown below?

[tex]\[
\left[\begin{array}{ccc}
4 & 19 & -5 \\
7 & 0 & -14
\end{array}\right] + \left[\begin{array}{ccc}
-8 & 7 & 0 \\
-1 & 17 & 6
\end{array}\right] =
\][/tex]

A. [tex]\(\left[\begin{array}{ccc}11 & 19 & 19 \\ 9 & 24 & 6\end{array}\right]\)[/tex]
B. [tex]\(\left[\begin{array}{ccc}11 & 19 & -19 \\ -9 & 24 & 6\end{array}\right]\)[/tex]
C. [tex]\(\left[\begin{array}{ccc}-4 & 26 & 5 \\ 6 & 17 & 8\end{array}\right]\)[/tex]
D. [tex]\(\left[\begin{array}{ccc}-4 & 26 & -5 \\ 6 & 17 & -8\end{array}\right]\)[/tex]



Answer :

To find the sum of two matrices, you simply add the corresponding elements of each matrix together. Let's break this down step-by-step for the given matrices:

The first matrix is:
[tex]\[ \begin{pmatrix} 4 & 19 & -5 \\ 7 & 0 & -14 \end{pmatrix} \][/tex]

The second matrix is:
[tex]\[ \begin{pmatrix} -8 & 7 & 0 \\ -1 & 17 & 6 \end{pmatrix} \][/tex]

Now, let's add the corresponding elements from both matrices.

1. For the element in the first row, first column:
[tex]\[ 4 + (-8) = -4 \][/tex]

2. For the element in the first row, second column:
[tex]\[ 19 + 7 = 26 \][/tex]

3. For the element in the first row, third column:
[tex]\[ -5 + 0 = -5 \][/tex]

4. For the element in the second row, first column:
[tex]\[ 7 + (-1) = 6 \][/tex]

5. For the element in the second row, second column:
[tex]\[ 0 + 17 = 17 \][/tex]

6. For the element in the second row, third column:
[tex]\[ -14 + 6 = -8 \][/tex]

Combining all these results, the sum of the two matrices is:
[tex]\[ \begin{pmatrix} -4 & 26 & -5 \\ 6 & 17 & -8 \end{pmatrix} \][/tex]

Therefore, the correct answer is:
[tex]\[ \left[\begin{array}{ccc}-4 & 26 & -5 \\ 6 & 17 & -8\end{array}\right] \][/tex]