For the function [tex]\( f(t) = P e^{rt} \)[/tex], if [tex]\( P = 3 \)[/tex] and [tex]\( r = 0.03 \)[/tex], what is the value of [tex]\( f(3) \)[/tex] to the nearest tenth?

A. 7.4
B. 1.1
C. 2.5
D. 3.3



Answer :

Let's solve for the value of the function [tex]\( f(t) = P e^{rt} \)[/tex], given the values [tex]\( P = 3 \)[/tex], [tex]\( r = 0.03 \)[/tex], and we need to find [tex]\( f(3) \)[/tex].

First, substitute the given values into the function:

[tex]\[ f(3) = 3 e^{0.03 \times 3} \][/tex]

Now, simplify the exponent:

[tex]\[ 0.03 \times 3 = 0.09 \][/tex]

Thus, the expression now becomes:

[tex]\[ f(3) = 3 e^{0.09} \][/tex]

To find the value of [tex]\( f(3) \)[/tex], we need the value of the mathematical constant [tex]\( e \)[/tex] raised to the power of [tex]\( 0.09 \)[/tex]. Using the fact that [tex]\( e^{0.09} \)[/tex] can be computed (typically with a calculator or numerical methods), we get the following value:

[tex]\[ e^{0.09} \approx 1.09417 \][/tex]

Next, multiply this result by [tex]\( P \)[/tex]:

[tex]\[ 3 \times 1.09417 \approx 3.28251 \][/tex]

Rounding this value to the nearest tenth:

[tex]\[ 3.28251 \approx 3.3 \][/tex]

Therefore, the value of [tex]\( f(3) \)[/tex] rounded to the nearest tenth is [tex]\( 3.3 \)[/tex].

So, the correct answer is:

D. 3.3