What is the square root of [tex]\( 2^{1/4} \)[/tex]?

A. [tex]\( \frac{1}{8} \)[/tex]
B. [tex]\( \frac{1}{4} \)[/tex]
C. [tex]\( \frac{1}{2} \)[/tex]
D. [tex]\( \frac{1}{4} \)[/tex]
E. [tex]\( \frac{11}{2} \)[/tex]



Answer :

Let's solve the problem step-by-step logically and systematically to find out the square root of [tex]\(2^{1/4}\)[/tex] from the given options:

1. We start by calculating the expression [tex]\(2^{1/4}\)[/tex], which is the fourth root of 2. We represent this mathematically as:
[tex]\[ 2^{1/4} = \sqrt[4]{2} \][/tex]

2. Next, we need to find the square root of this result. If we denote the fourth root of 2 as [tex]\(x\)[/tex], then:
[tex]\[ x = 2^{1/4} \][/tex]

3. We now take the square root of [tex]\(x\)[/tex]:
[tex]\[ \sqrt{2^{1/4}} = (2^{1/4})^{1/2} \][/tex]

4. Using the properties of exponents, specifically [tex]\( (a^m)^n = a^{m \cdot n} \)[/tex], we simplify the exponent:
[tex]\[ (2^{1/4})^{1/2} = 2^{(1/4) \cdot (1/2)} = 2^{1/8} \][/tex]

5. We need to evaluate which of the given options corresponds to [tex]\(2^{1/8}\)[/tex]. The options are:
[tex]\[ \text{(a)} \ \frac{1}{8}, \quad \text{(b)} \ \frac{1}{4}, \quad \text{(c)} \ \frac{1}{2}, \quad \text{(d)} \ \frac{1}{4}, \quad \text{(e)} \ \frac{11}{2} \][/tex]

6. Since none of these options directly represent [tex]\(2^{1/8}\)[/tex] as a straightforward fraction, and considering floating-point comparison inaccuracies, we go through the options to see if [tex]\(2^{1/8}\)[/tex] closely matches any of them.

Checking each option logically:
- [tex]\( \frac{1}{8} = 0.125 \)[/tex]
- [tex]\( \frac{1}{4} = 0.25 \)[/tex]
- [tex]\( \frac{1}{2} = 0.5 \)[/tex]
- [tex]\( \frac{11}{2} = 5.5 \)[/tex]

Comparing these values with [tex]\(2^{1/8}\)[/tex], which is approximately [tex]\(1.0905\)[/tex], none of the given options match [tex]\(2^{1/8}\)[/tex].

Therefore, the correct conclusion based on the available options is:

None of the given options correspond to the square root of [tex]\(2^{1/4}\)[/tex].

Thus, the answer is:
[tex]\[ \boxed{\text{None}} \][/tex]