The coordinates of the endpoints of [tex]\(\overline{AB}\)[/tex] and [tex]\(\overline{CD}\)[/tex] are [tex]\(A(3,6)\)[/tex], [tex]\(B(8,7)\)[/tex], [tex]\(C(3,3)\)[/tex], and [tex]\(D(8,4)\)[/tex]. Which statement describes how [tex]\(\overline{AB}\)[/tex] and [tex]\(\overline{CD}\)[/tex] are related?

A. [tex]\(\overline{AB} \parallel \overline{CD}\)[/tex]

B. [tex]\(\overline{AB} \perp \overline{CD}\)[/tex], and [tex]\(\overline{AB}\)[/tex] bisects [tex]\(\overline{CD}\)[/tex]

C. [tex]\(\overline{AB} \perp \overline{CD}\)[/tex], but [tex]\(\overline{AB}\)[/tex] does not bisect [tex]\(\overline{CD}\)[/tex]

D. [tex]\(\overline{AB}\)[/tex] is neither parallel nor perpendicular to [tex]\(\overline{CD}\)[/tex]



Answer :

To determine the relationship between line segments [tex]\(\overline{AB}\)[/tex] and [tex]\(\overline{CD}\)[/tex], we'll examine their slopes and any geometric properties related to their intersection.

Step 1: Calculate the slope of [tex]\(\overline{AB}\)[/tex]

The formula to find the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

For [tex]\(\overline{AB}\)[/tex]:
- [tex]\(A(3, 6)\)[/tex]
- [tex]\(B(8, 7)\)[/tex]

The slope of [tex]\(\overline{AB}\)[/tex]:
[tex]\[ \text{slope}_{AB} = \frac{7 - 6}{8 - 3} = \frac{1}{5} = 0.2 \][/tex]

Step 2: Calculate the slope of [tex]\(\overline{CD}\)[/tex]

For [tex]\(\overline{CD}\)[/tex]:
- [tex]\(C(3, 3)\)[/tex]
- [tex]\(D(8, 4)\)[/tex]

The slope of [tex]\(\overline{CD}\)[/tex]:
[tex]\[ \text{slope}_{CD} = \frac{4 - 3}{8 - 3} = \frac{1}{5} = 0.2 \][/tex]

Step 3: Compare the slopes

Next, we compare the slopes of [tex]\(\overline{AB}\)[/tex] and [tex]\(\overline{CD}\)[/tex]:

- The slope of [tex]\(\overline{AB}\)[/tex] is [tex]\(0.2\)[/tex].
- The slope of [tex]\(\overline{CD}\)[/tex] is [tex]\(0.2\)[/tex].

Since both slopes are equal, we can conclude that [tex]\(\overline{AB}\)[/tex] is parallel to [tex]\(\overline{CD}\)[/tex].

Conclusion:

Given that the slopes are both [tex]\(0.2\)[/tex] and hence equal, the line segments [tex]\(\overline{AB}\)[/tex] and [tex]\(\overline{CD}\)[/tex] are related as follows:

- Statement A: [tex]\(\overline{AB} \| \overline{CD}\)[/tex]

This means that [tex]\(\overline{AB}\)[/tex] is parallel to [tex]\(\overline{CD}\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]