What are the [tex]\( x \)[/tex]- and [tex]\( y \)[/tex]-coordinates of point [tex]\( P \)[/tex] on the directed line segment from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] such that [tex]\( P \)[/tex] is [tex]\(\frac{2}{3}\)[/tex] the length of the line segment from [tex]\( A \)[/tex] to [tex]\( B \)[/tex]?

[tex]\[
\begin{aligned}
& x = \left(\frac{m}{m+n}\right)(x_2 - x_1) + x_1 \\
& y = \left(\frac{m}{m+n}\right)(y_2 - y_1) + y_1
\end{aligned}
\][/tex]

A. [tex]\((2, -1)\)[/tex]
B. [tex]\((4, -3)\)[/tex]
C. [tex]\((-1, 2)\)[/tex]
D. [tex]\((3, -2)\)[/tex]



Answer :

Let's find the coordinates of point [tex]\( P \)[/tex] which divides the directed line segment from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] in the ratio of [tex]\( 2:1 \)[/tex].

Given:
- Point [tex]\( A \)[/tex] has coordinates [tex]\((2, -1)\)[/tex]
- Point [tex]\( B \)[/tex] has coordinates [tex]\((4, -3)\)[/tex]
- The ratio [tex]\( m:n = 2:1 \)[/tex]

We need to use the section formula to find the coordinates of [tex]\( P \)[/tex]:

[tex]\[ P(x, y) = \left( \frac{m \cdot x_2 + n \cdot x_1}{m + n}, \frac{m \cdot y_2 + n \cdot y_1}{m + n} \right) \][/tex]

Here [tex]\( m = 2 \)[/tex], [tex]\( n = 1 \)[/tex], [tex]\( x_1 = 2 \)[/tex], [tex]\( y_1 = -1 \)[/tex], [tex]\( x_2 = 4 \)[/tex], and [tex]\( y_2 = -3 \)[/tex].

First, let's find the [tex]\( x \)[/tex]-coordinate of [tex]\( P \)[/tex]:

[tex]\[ x = \frac{m \cdot x_2 + n \cdot x_1}{m + n} \][/tex]
[tex]\[ x = \frac{2 \cdot 4 + 1 \cdot 2}{2 + 1} \][/tex]
[tex]\[ x = \frac{8 + 2}{3} \][/tex]
[tex]\[ x = \frac{10}{3} \][/tex]
[tex]\[ x = 3.333333333333333 \][/tex]

Next, let's find the [tex]\( y \)[/tex]-coordinate of [tex]\( P \)[/tex]:

[tex]\[ y = \frac{m \cdot y_2 + n \cdot y_1}{m + n} \][/tex]
[tex]\[ y = \frac{2 \cdot (-3) + 1 \cdot (-1)}{2 + 1} \][/tex]
[tex]\[ y = \frac{-6 - 1}{3} \][/tex]
[tex]\[ y = \frac{-7}{3} \][/tex]
[tex]\[ y = -2.333333333333333 \][/tex]

Thus, the coordinates of point [tex]\( P \)[/tex] are [tex]\( (3.333333333333333, -2.333333333333333) \)[/tex].