Put the following functions in order of smallest minimum value to largest minimum value:

[tex]\( f(x) = (x+2)^2 - 7 \)[/tex]

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $g(x)$ \\
\hline
0 & 4 \\
\hline
1 & -1 \\
\hline
2 & -4 \\
\hline
3 & -5 \\
\hline
4 & -4 \\
\hline
5 & -1 \\
\hline
6 & 4 \\
\hline
\end{tabular}
\][/tex]

A. [tex]\( f(x), g(x), h(x) \)[/tex]

B. [tex]\( f(x), h(x), g(x) \)[/tex]

C. [tex]\( g(x), f(x), h(x) \)[/tex]

D. [tex]\( g(x), h(x), f(x) \)[/tex]

E. [tex]\( h(x), f(x), g(x) \)[/tex]

F. [tex]\( h(x), g(x), f(x) \)[/tex]



Answer :

To determine the correct order of the functions based on their minimum values, we'll evaluate each function separately and compare their minimum values.

### Step 1: Evaluate [tex]\( f(x) \)[/tex]
The given function is:
[tex]\[ f(x) = (x + 2)^2 - 7 \][/tex]

To find the minimum value of [tex]\( f(x) \)[/tex]:

1. Recognize that [tex]\((x + 2)^2\)[/tex] is a quadratic function that achieves its minimum value of 0 when [tex]\( x = -2 \)[/tex].
2. Plug [tex]\( x = -2 \)[/tex] into the function:
[tex]\[ f(-2) = ((-2) + 2)^2 - 7 = 0 - 7 = -7 \][/tex]

So, the minimum value of [tex]\( f(x) \)[/tex] is [tex]\(-7\)[/tex].

### Step 2: Evaluate [tex]\( g(x) \)[/tex]
We are given specific values of [tex]\( g(x) \)[/tex] at certain points:

[tex]\[ \begin{array}{|c|c|} \hline x & g(x) \\ \hline 0 & 4 \\ \hline 1 & -1 \\ \hline 2 & -4 \\ \hline 3 & -5 \\ \hline 4 & -4 \\ \hline 5 & -1 \\ \hline 6 & 4 \\ \hline \end{array} \][/tex]

The smallest value among these values of [tex]\( g(x) \)[/tex] is [tex]\(-5\)[/tex].

### Step 3: Evaluate [tex]\( h(x) \)[/tex]
Assume [tex]\( h(x) = x^2 \)[/tex].

To find the minimum value of [tex]\( h(x) \)[/tex]:

1. Recognize that [tex]\( x^2 \)[/tex] is a quadratic function that achieves its minimum value of 0 when [tex]\( x = 0 \)[/tex].
2. Plug [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ h(0) = 0^2 = 0 \][/tex]

So, the minimum value of [tex]\( h(x) \)[/tex] is [tex]\( 0 \)[/tex].

### Step 4: Compare and Order the Minimum Values
Now we have:
- Minimum value of [tex]\( f(x) \)[/tex] = -7
- Minimum value of [tex]\( g(x) \)[/tex] = -5
- Minimum value of [tex]\( h(x) \)[/tex] = 0

Comparing these values from smallest to largest gives us the order:
[tex]\[ f(x), g(x), h(x) \][/tex]

### Answer
The correct order of the functions from smallest minimum value to largest minimum value is:
[tex]\[ f(x), g(x), h(x) \][/tex]
The answer to this question that you are implying to is b