Answer :
Sure, let's simplify the given algebraic expression step-by-step.
The original expression is:
[tex]\[ 6x - 4(x + 3) \][/tex]
First, apply the distributive property to remove the parentheses. The distributive property states that [tex]\( a(b + c) = ab + ac \)[/tex].
[tex]\[ 6x - 4(x + 3) = 6x - 4x - 4 \cdot 3 \][/tex]
Next, perform the multiplication:
[tex]\[ 6x - 4x - 12 \][/tex]
Now, combine like terms. The terms [tex]\( 6x \)[/tex] and [tex]\( -4x \)[/tex] are like terms because they both contain [tex]\( x \)[/tex]:
[tex]\[ (6x - 4x) - 12 = 2x - 12 \][/tex]
So the simplified expression is:
[tex]\[ 2x - 12 \][/tex]
Therefore, the correct answer is:
D. [tex]\( 2x - 12 \)[/tex]
The original expression is:
[tex]\[ 6x - 4(x + 3) \][/tex]
First, apply the distributive property to remove the parentheses. The distributive property states that [tex]\( a(b + c) = ab + ac \)[/tex].
[tex]\[ 6x - 4(x + 3) = 6x - 4x - 4 \cdot 3 \][/tex]
Next, perform the multiplication:
[tex]\[ 6x - 4x - 12 \][/tex]
Now, combine like terms. The terms [tex]\( 6x \)[/tex] and [tex]\( -4x \)[/tex] are like terms because they both contain [tex]\( x \)[/tex]:
[tex]\[ (6x - 4x) - 12 = 2x - 12 \][/tex]
So the simplified expression is:
[tex]\[ 2x - 12 \][/tex]
Therefore, the correct answer is:
D. [tex]\( 2x - 12 \)[/tex]