Consider the expressions shown below:

[tex]\[
\begin{array}{|c|c|c|}
\hline
A & B & C \\
\hline
-7x^2 - 2x + 5 & 7x^2 - 2x + 7 & 7x^2 + 2x - 5 \\
\hline
\end{array}
\][/tex]

Complete each of the following statements with the letter that represents the expression:

1. [tex]\((3x^2 - 6x + 11) - (10x^2 - 4x + 6)\)[/tex] is equivalent to expression [tex]\(\square\)[/tex]

2. [tex]\((-3x^2 - 5x - 3) - (-10x^2 - 7x + 2)\)[/tex] is equivalent to expression [tex]\(\square\)[/tex]

3. [tex]\((12x^2 + 6x - 5) - (5x^2 + 8x - 12)\)[/tex] is equivalent to expression [tex]\(\square\)[/tex]



Answer :

To find which expression each of the following differences of polynomial expressions is equivalent to, we simplify each step-by-step.

### Simplification Steps:

1. Simplify [tex]\((3x^2 - 6x + 11) - (10x^2 - 4x + 6)\)[/tex]:

[tex]\[ \begin{align*} =& (3x^2 - 6x + 11) - 10x^2 + 4x - 6 \\ =& (3x^2 - 10x^2) + (-6x + 4x) + (11 - 6) \\ =& -7x^2 - 2x + 5 \\ \end{align*} \][/tex]
This is equivalent to expression [tex]\(A\)[/tex].

2. Simplify [tex]\((-3x^2 - 5x - 3) - (-10x^2 - 7x + 2)\)[/tex]:

[tex]\[ \begin{align*} =& (-3x^2 - 5x - 3) + 10x^2 + 7x - 2 \\ =& (-3x^2 + 10x^2) + (-5x + 7x) + (-3 - 2) \\ =& 7x^2 + 2x - 5 \\ \end{align*} \][/tex]
This is equivalent to expression [tex]\(C\)[/tex].

3. Simplify [tex]\((12x^2 + 6x - 5) - (5x^2 + 8x - 12)\)[/tex]:

[tex]\[ \begin{align*} =& (12x^2 + 6x - 5) - 5x^2 - 8x + 12 \\ =& (12x^2 - 5x^2) + (6x - 8x) + (-5 + 12) \\ =& 7x^2 - 2x + 7 \\ \end{align*} \][/tex]
This is equivalent to expression [tex]\(B\)[/tex].

### Final Answers:

[tex]\[ \begin{array}{l} (3x^2 - 6x + 11) - (10x^2 - 4x + 6) \text{ is equivalent to expression } A \\ (-3x^2 - 5x - 3) - (-10x^2 - 7x + 2) \text{ is equivalent to expression } C \\ (12x^2 + 6x - 5) - (5x^2 + 8x - 12) \text{ is equivalent to expression } B \\ \end{array} \][/tex]

So, the completed statements are:
[tex]\[ \left(3x^2 - 6x + 11\right) - \left(10x^2 - 4x + 6\right) \text{ is equivalent to expression} \ A \][/tex]
[tex]\[ \left(-3x^2 - 5x - 3\right) - \left(-10x^2 - 7x + 2\right) \text{ is equivalent to expression} \ C \][/tex]
[tex]\[ \left(12x^2 + 6x - 5\right) - \left(5x^2 + 8x - 12\right) \text{ is equivalent to expression} \ B \][/tex]