How many formula units are in 35.0 g of KNO₃?

(Molar mass of KNO₃ = 101.11 g/mol)

[tex]\[ \text{[?]} \times 10^{[?]} \text{ formula units of KNO₃} \][/tex]



Answer :

To determine the number of formula units in 35.0 grams of [tex]\( \text{KNO}_3 \)[/tex], follow these steps:

1. Determine the number of moles of [tex]\( \text{KNO}_3 \)[/tex]:

The molar mass of [tex]\( \text{KNO}_3 \)[/tex] is given as 101.11 g/mol.

Using the formula for moles (number of moles = mass / molar mass):
[tex]\[ \text{moles} = \frac{35.0 \text{ g}}{101.11 \text{ g/mol}} \approx 0.3462 \text{ moles} \][/tex]

2. Convert moles to formula units using Avogadro's number:

Avogadro's number ([tex]\(6.022 \times 10^{23}\)[/tex]) tells us how many entities (atoms, molecules, formula units, etc.) are in one mole of a substance.

To find the number of formula units:
[tex]\[ \text{formula units} = \text{moles} \times \text{Avogadro's number} \][/tex]
Substituting the values:
[tex]\[ \text{formula units} = 0.3462 \text{ moles} \times 6.022 \times 10^{23} \approx 2.08 \times 10^{23} \text{ formula units} \][/tex]

So, in 35.0 grams of [tex]\( \text{KNO}_3 \)[/tex], there are approximately [tex]\(2.08 \times 10^{23}\)[/tex] formula units of [tex]\( \text{KNO}_3 \)[/tex].