Answered

What is the numerator for the following rational expression?

[tex]\[
\frac{p}{q}+\frac{6}{q}=\frac{?}{q}
\][/tex]



Answer :

Of course! Let's find the numerator for the rational expression given:

[tex]\[ \frac{p}{q}+\frac{6}{q}=\frac{?}{q} \][/tex]

Here's the step-by-step solution:

1. Identify the common denominator:
Both terms [tex]\(\frac{p}{q}\)[/tex] and [tex]\(\frac{6}{q}\)[/tex] have the same denominator [tex]\(q\)[/tex].

2. Combine the fractions:
Since the denominators are the same, we can simply add the numerators directly.

To combine [tex]\(\frac{p}{q}\)[/tex] and [tex]\(\frac{6}{q}\)[/tex], we keep the common denominator [tex]\(q\)[/tex] and add the numerators:
[tex]\[ \frac{p}{q} + \frac{6}{q} = \frac{p + 6}{q} \][/tex]

3. Determine the numerator:
The numerator of the resulting expression is the sum of the numerators of the original expressions. So, we add:
[tex]\[ p + 6 \][/tex]

Therefore, the numerator for the expression

[tex]\[ \frac{p}{q}+\frac{6}{q}=\frac{p+6}{q} \][/tex]

is [tex]\(\boldsymbol{p + 6}\)[/tex].