Select the correct answer.

What is the simplest form of this expression?
[tex]\[
(2x + 1)\left(x^2 - 9x + 11\right)
\][/tex]

A. [tex]\(2x^3 - 19x^2 + 11x + 11\)[/tex]
B. [tex]\(2x^3 - 17x^2 + 13x + 11\)[/tex]
C. [tex]\(2x^3 + 18x^2 + 22x + 11\)[/tex]
D. [tex]\(2x^3 - 18x^2 - 9x + 11\)[/tex]



Answer :

To simplify the expression [tex]\((2x + 1)(x^2 - 9x + 11)\)[/tex], we'll follow these steps:

1. Distribute each term in the first polynomial to every term in the second polynomial:

[tex]\[ \begin{align*} (2x + 1)(x^2 - 9x + 11) &= 2x \cdot (x^2 - 9x + 11) + 1 \cdot (x^2 - 9x + 11) \\ &= 2x \cdot x^2 + 2x \cdot (-9x) + 2x \cdot 11 + 1 \cdot x^2 + 1 \cdot (-9x) + 1 \cdot 11 \end{align*} \][/tex]

2. Multiply each term:

[tex]\[ \begin{align*} 2x \cdot x^2 &= 2x^3 \\ 2x \cdot (-9x) &= -18x^2 \\ 2x \cdot 11 &= 22x \\ 1 \cdot x^2 &= x^2 \\ 1 \cdot (-9x) &= -9x \\ 1 \cdot 11 &= 11 \end{align*} \][/tex]

3. Combine all the terms:

[tex]\[ 2x^3 - 18x^2 + 22x + x^2 - 9x + 11 \][/tex]

4. Combine like terms:

[tex]\[ \begin{align*} 2x^3 & \quad \text{(there are no other x^3 terms)} \\ (-18x^2 + x^2) &= -17x^2 \\ (22x - 9x) &= 13x \\ 11 & \quad \text{(there are no other constant terms)} \end{align*} \][/tex]

Therefore, the simplest form of the expression is:

[tex]\[ 2x^3 - 17x^2 + 13x + 11 \][/tex]

So, the correct answer is:

[tex]\[ \boxed{2x^3 - 17x^2 + 13x + 11} \][/tex]

Thus, the correct choice is [tex]\( \textbf{B.} \)[/tex]