Answer :

To solve the division of the two given algebraic fractions:

[tex]\[ \frac{z^2 - 25}{z} \div \frac{z + 5}{z - 5} \][/tex]

We start by remembering that dividing by a fraction is equivalent to multiplying by the reciprocal of that fraction. So, we can rewrite the expression as:

[tex]\[ \frac{z^2 - 25}{z} \times \frac{z - 5}{z + 5} \][/tex]

Next, we simplify the numerator [tex]\(z^2 - 25\)[/tex]. This is a difference of squares and can be factored as:

[tex]\[ z^2 - 25 = (z + 5)(z - 5) \][/tex]

Now we substitute this factorized form back into our expression:

[tex]\[ \frac{(z + 5)(z - 5)}{z} \times \frac{z - 5}{z + 5} \][/tex]

Now, let's multiply these fractions together. When we multiply fractions, we multiply the numerators together and the denominators together:

[tex]\[ \frac{(z + 5)(z - 5)}{z} \times \frac{z - 5}{z + 5} = \frac{(z + 5)(z - 5)(z - 5)}{z(z + 5)} \][/tex]

In this fraction, we have factors of [tex]\((z + 5)\)[/tex] in the numerator and the denominator, so we can cancel them out:

[tex]\[ \frac{(z - 5)(z - 5)}{z} = \frac{(z - 5)^2}{z} \][/tex]

Expanding [tex]\((z - 5)^2\)[/tex], we get:

[tex]\[ (z - 5)^2 = z^2 - 10z + 25 \][/tex]

Thus, our expression simplifies to:

[tex]\[ \frac{z^2 - 10z + 25}{z} \][/tex]

This can be divided term-by-term:

[tex]\[ \frac{z^2}{z} - \frac{10z}{z} + \frac{25}{z} \][/tex]

Simplifying each term:

[tex]\[ z - 10 + \frac{25}{z} \][/tex]

So, the simplified result of the given division is:

[tex]\[ z - 10 + \frac{25}{z} \][/tex]