Divide as indicated.

[tex]\[
\frac{z^2-25}{z} \div \frac{z+5}{z-5}
\][/tex]

Select the correct choice below and fill in the answer box(es) to complete your choice. Simplify your answer. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.



Answer :

Sure, let's simplify the given expression step by step:

Given expression:
[tex]\[ \frac{z^2 - 25}{z} \div \frac{z + 5}{z - 5} \][/tex]

Step 1: Recall that dividing by a fraction is equivalent to multiplying by its reciprocal. Thus, we rewrite the expression as:
[tex]\[ \frac{z^2 - 25}{z} \times \frac{z - 5}{z + 5} \][/tex]

Step 2: Next, we factorize the expression [tex]\( z^2 - 25 \)[/tex]. Notice that [tex]\( z^2 - 25 \)[/tex] is a difference of squares and can be factored as:
[tex]\[ z^2 - 25 = (z - 5)(z + 5) \][/tex]

Step 3: Substitute the factored form into the given expression:
[tex]\[ \frac{(z - 5)(z + 5)}{z} \times \frac{z - 5}{z + 5} \][/tex]

Step 4: We can now simplify the expression by canceling common factors in the numerator and the denominator. Cancel out [tex]\( z + 5 \)[/tex] from the numerator and denominator:
[tex]\[ \frac{(z - 5)(z + 5)}{z (z + 5)} \times \frac{z - 5}{z + 5} = \frac{z - 5}{z} \][/tex]

Thus, the simplified expression is:
[tex]\[ \frac{z - 5}{z} \][/tex]

So, the final answer is:
[tex]\[ \frac{z - 5}{z} \][/tex]