To solve this system of equations, we need to find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy both equations simultaneously.
The system of equations given is:
[tex]\[
\begin{array}{l}
x - y = 34 \\
x + y = 212
\end{array}
\][/tex]
Let's solve this step-by-step.
1. Add the two equations to eliminate [tex]\(y\)[/tex]:
[tex]\[
\begin{array}{c}
(x - y) + (x + y) = 34 + 212 \\
\end{array}
\][/tex]
Simplify the left side:
[tex]\[
x - y + x + y = 34 + 212
\][/tex]
Combine like terms:
[tex]\[
2x = 246
\][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[
x = \frac{246}{2} = 123
\][/tex]
So, Malik has 123 domestic stamps.
2. Substitute [tex]\(x = 123\)[/tex] back into one of the original equations to find [tex]\(y\)[/tex]:
We use the second equation:
[tex]\[
x + y = 212
\][/tex]
Plug in [tex]\(x = 123\)[/tex]:
[tex]\[
123 + y = 212
\][/tex]
Solve for [tex]\(y\)[/tex]:
[tex]\[
y = 212 - 123 = 89
\][/tex]
So, Malik has 89 foreign stamps.
Therefore, Malik has:
[tex]\[
\boxed{89}
\][/tex]
foreign stamps and
[tex]\[
\boxed{123}
\][/tex]
domestic stamps.