Answer :
To solve this system of equations, we need to find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy both equations simultaneously.
The system of equations given is:
[tex]\[ \begin{array}{l} x - y = 34 \\ x + y = 212 \end{array} \][/tex]
Let's solve this step-by-step.
1. Add the two equations to eliminate [tex]\(y\)[/tex]:
[tex]\[ \begin{array}{c} (x - y) + (x + y) = 34 + 212 \\ \end{array} \][/tex]
Simplify the left side:
[tex]\[ x - y + x + y = 34 + 212 \][/tex]
Combine like terms:
[tex]\[ 2x = 246 \][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{246}{2} = 123 \][/tex]
So, Malik has 123 domestic stamps.
2. Substitute [tex]\(x = 123\)[/tex] back into one of the original equations to find [tex]\(y\)[/tex]:
We use the second equation:
[tex]\[ x + y = 212 \][/tex]
Plug in [tex]\(x = 123\)[/tex]:
[tex]\[ 123 + y = 212 \][/tex]
Solve for [tex]\(y\)[/tex]:
[tex]\[ y = 212 - 123 = 89 \][/tex]
So, Malik has 89 foreign stamps.
Therefore, Malik has:
[tex]\[ \boxed{89} \][/tex]
foreign stamps and
[tex]\[ \boxed{123} \][/tex]
domestic stamps.
The system of equations given is:
[tex]\[ \begin{array}{l} x - y = 34 \\ x + y = 212 \end{array} \][/tex]
Let's solve this step-by-step.
1. Add the two equations to eliminate [tex]\(y\)[/tex]:
[tex]\[ \begin{array}{c} (x - y) + (x + y) = 34 + 212 \\ \end{array} \][/tex]
Simplify the left side:
[tex]\[ x - y + x + y = 34 + 212 \][/tex]
Combine like terms:
[tex]\[ 2x = 246 \][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{246}{2} = 123 \][/tex]
So, Malik has 123 domestic stamps.
2. Substitute [tex]\(x = 123\)[/tex] back into one of the original equations to find [tex]\(y\)[/tex]:
We use the second equation:
[tex]\[ x + y = 212 \][/tex]
Plug in [tex]\(x = 123\)[/tex]:
[tex]\[ 123 + y = 212 \][/tex]
Solve for [tex]\(y\)[/tex]:
[tex]\[ y = 212 - 123 = 89 \][/tex]
So, Malik has 89 foreign stamps.
Therefore, Malik has:
[tex]\[ \boxed{89} \][/tex]
foreign stamps and
[tex]\[ \boxed{123} \][/tex]
domestic stamps.