Which of the following are solutions to the equation below? Check all that apply.

(4x - 1)^2 = 11

A. [tex]\( x = \frac{-\sqrt{11} + 1}{4} \)[/tex]

B. [tex]\( x = \sqrt{11} + \frac{1}{4} \)[/tex]

C. [tex]\( x = \frac{\sqrt{12}}{4} \)[/tex]

D. [tex]\( x = \frac{\sqrt{11} + 1}{4} \)[/tex]

E. [tex]\( x = -\frac{\sqrt{12}}{4} \)[/tex]

F. [tex]\( x = -\sqrt{11} + \frac{1}{4} \)[/tex]



Answer :

To determine the solutions to the equation [tex]\((4x - 1)^2 = 11\)[/tex], we first need to solve this mathematical problem step-by-step.

1. Simplify the Equation:

Start by taking the square root of both sides of the equation:

[tex]\[ \sqrt{(4x - 1)^2} = \sqrt{11} \][/tex]

Which simplifies to:

[tex]\[ |4x - 1| = \sqrt{11} \][/tex]

2. Consider Both Cases for the Absolute Value:

The equation [tex]\(|4x - 1| = \sqrt{11}\)[/tex] leads to two possible equations:

[tex]\[ 4x - 1 = \sqrt{11} \][/tex]
[tex]\[ 4x - 1 = -\sqrt{11} \][/tex]

3. Solve Each Equation:

For the first equation:
[tex]\[ 4x - 1 = \sqrt{11} \][/tex]

Add 1 to both sides:
[tex]\[ 4x = \sqrt{11} + 1 \][/tex]

Divide by 4:
[tex]\[ x = \frac{\sqrt{11} + 1}{4} \][/tex]

For the second equation:
[tex]\[ 4x - 1 = -\sqrt{11} \][/tex]

Add 1 to both sides:
[tex]\[ 4x = -\sqrt{11} + 1 \][/tex]

Divide by 4:
[tex]\[ x = \frac{-\sqrt{11} + 1}{4} \][/tex]

4. Evaluate Possible Options:

Now, we are given the following options:

Option A: [tex]\( \frac{-\sqrt{11} + 1}{4} \)[/tex]

Option B: [tex]\( \sqrt{11} + \frac{1}{4} \)[/tex]

Option C: [tex]\( \frac{\sqrt{12}}{4} \)[/tex]

Option D: [tex]\( \frac{\sqrt{11} + 1}{4} \)[/tex]

Option E: [tex]\( -\frac{\sqrt{12}}{4} \)[/tex]

Option F: [tex]\( -\sqrt{11} + \frac{1}{4} \)[/tex]

We need to check which of these options match the calculated solutions [tex]\( \frac{\sqrt{11} + 1}{4} \)[/tex] and [tex]\( \frac{-\sqrt{11} + 1}{4} \)[/tex]. Let's evaluate them numerically for clarity.

- Option A: [tex]\( x = \frac{-\sqrt{11} + 1}{4} \approx -0.57915619758885 \)[/tex]
This is a match.

- Option B: [tex]\( x = \sqrt{11} + \frac{1}{4} \approx 3.33333333333333 \)[/tex]
This is not a match.

- Option C: [tex]\( x = \frac{\sqrt{12}}{4} \approx 0.86602540378443 \)[/tex]
This is not a match.

- Option D: [tex]\( x = \frac{\sqrt{11} + 1}{4} \approx 1.07915619758885 \)[/tex]
This is a match.

- Option E: [tex]\( x = -\frac{\sqrt{12}}{4} \approx -0.86602540378443 \)[/tex]
This is not a match.

- Option F: [tex]\( x = -\sqrt{11} + \frac{1}{4} \approx -0.57915619758885 \)[/tex]
This is a match.

Thus, the correct solutions are:

- Option A: [tex]\( x = \frac{-\sqrt{11} + 1}{4} \)[/tex]
- Option D: [tex]\( x = \frac{\sqrt{11} + 1}{4} \)[/tex]
- Option F: [tex]\( x = -\sqrt{11} + \frac{1}{4} \)[/tex]