If [tex]\( f(x) = 4^x - 8 \)[/tex] and [tex]\( g(x) = 5x + 6 \)[/tex], find [tex]\( (f - g)(x) \)[/tex].

A. [tex]\( (f - g)(x) = 4^x - 5x - 14 \)[/tex]

B. [tex]\( (f - g)(x) = -4^x + 5x + 14 \)[/tex]

C. [tex]\( (f - g)(x) = -x - 14 \)[/tex]

D. [tex]\( (f - g)(x) = 4^x + 5x - 2 \)[/tex]



Answer :

To solve for [tex]\((f-g)(x)\)[/tex], we need to determine the expression that results by subtracting the function [tex]\(g(x)\)[/tex] from the function [tex]\(f(x)\)[/tex].

Given:
[tex]\[ f(x) = 4^x - 8 \][/tex]
[tex]\[ g(x) = 5x + 6 \][/tex]

We want to find [tex]\( (f-g)(x) \)[/tex]:

[tex]\[ (f-g)(x) = f(x) - g(x) \][/tex]

Substituting the given functions into the equation:

[tex]\[ (f-g)(x) = (4^x - 8) - (5x + 6) \][/tex]

Now, distribute the negative sign through the second term:

[tex]\[ (f-g)(x) = 4^x - 8 - 5x - 6 \][/tex]

Combine like terms:

[tex]\[ (f-g)(x) = 4^x - 5x - 14 \][/tex]

Thus, the simplified form of [tex]\((f-g)(x)\)[/tex] is:

[tex]\[ (f-g)(x) = 4^x - 5x - 14 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{A. (f-g)(x) = 4^x - 5x - 14} \][/tex]