Order the steps to solve the equation [tex]\(\log \left(x^2 - 15\right) = \log (2x)\)[/tex] from 1 to 5.
[tex]\(\square\)[/tex] [tex]\(x^2 - 15 = 2x\)[/tex]
[tex]\(\square\)[/tex] [tex]\(x^2 - 2x - 15 = 0\)[/tex]
[tex]\(\square\)[/tex]
[tex]\[
(x-5)(x+3) = 0 \\
x-5 = 0 \text{ or } x+3 = 0
\][/tex]
[tex]\(\square\)[/tex] Potential solutions are -3 and 5