Let's evaluate the function [tex]\( f(x) = 2^x \)[/tex] step-by-step for [tex]\( x = 4 \)[/tex].
1. Given the function [tex]\( f(x) = 2^x \)[/tex]:
2. Substitute [tex]\( x = 4 \)[/tex] into the function:
[tex]\[
f(4) = 2^4
\][/tex]
3. Calculate [tex]\( 2^4 \)[/tex]:
[tex]\[
2^4 = 16
\][/tex]
4. The calculated result for [tex]\( f(4) = 2^4 \)[/tex] is [tex]\( 16 \)[/tex].
5. The question asks if the output when the function [tex]\( f(x) = 2^x \)[/tex] is evaluated at [tex]\( x = 4 \)[/tex] is equal to 8:
[tex]\[
16 \neq 8
\][/tex]
Based on this evaluation, the statement "When the function [tex]\( f(x) = 2^x \)[/tex] is evaluated for [tex]\( x = 4 \)[/tex], the output is 8" is:
False