Triangle [tex]\(ABC\)[/tex] is a right triangle and [tex]\(\cos(22.6^\circ) = \frac{b}{13}\)[/tex].
Solve for [tex]\(b\)[/tex] and round to the nearest whole number.

Which equation correctly uses the value of [tex]\(b\)[/tex] to solve for [tex]\(a\)[/tex]?

A. [tex]\(\tan(22.6^\circ) = \frac{a}{13}\)[/tex]
B. [tex]\(\tan(22.6^\circ) = \frac{13}{a}\)[/tex]
C. [tex]\(\tan(22.6^\circ) = \frac{a}{12}\)[/tex]
D. [tex]\(\tan(22.6^\circ) = \frac{12}{a}\)[/tex]



Answer :

Let's solve the problem step-by-step.

### Step 1: Use the Cosine Value to Find [tex]\( b \)[/tex]

We know that:
[tex]\[ \cos(22.6^\circ) = \frac{b}{13} \][/tex]

Rearrange the equation to solve for [tex]\( b \)[/tex]:
[tex]\[ b = 13 \cdot \cos(22.6^\circ) \][/tex]

Using the given value for [tex]\(\cos(22.6^\circ)\)[/tex], we can determine [tex]\( b \)[/tex]:

[tex]\[ b \approx 13 \cdot 0.927 \][/tex]
[tex]\[ b \approx 12.001732822468751 \][/tex]

### Step 2: Round [tex]\( b \)[/tex] to the Nearest Whole Number

Rounding [tex]\( b \)[/tex] to the nearest whole number, we get:

[tex]\[ b \approx 12 \][/tex]

### Step 3: Determine the Correct Equation to Solve for [tex]\( a \)[/tex]

Given the choices for the equations involving [tex]\(\tan(22.6^\circ)\)[/tex]:

1. [tex]\(\tan(22.6^\circ) = \frac{a}{13}\)[/tex]
2. [tex]\(\tan(22.6^\circ) = \frac{13}{a}\)[/tex]
3. [tex]\(\tan(22.6^\circ) = \frac{a}{12}\)[/tex]
4. [tex]\(\tan(22.6^\circ) = \frac{12}{a}\)[/tex]

We need to check which equation correctly relates [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(\tan(22.6^\circ)\)[/tex].

Using the identity for a right triangle:
[tex]\[ \tan \theta = \frac{\text{opposite}}{\text{adjacent}} \][/tex]

In this case, rethink the sides of the triangle:
- [tex]\(\theta = 22.6^\circ\)[/tex]
- [tex]\( \text{adjacent side} = b \approx 12 \)[/tex]
- Hypotenuse = 13

Since:
[tex]\[ a = \text{opposite} \][/tex]
[tex]\[ b = \text{adjacent} \approx 12 \][/tex]

So:
[tex]\[ \tan(22.6^\circ) = \frac{a}{12} \][/tex]

Let's validate:
The equation that correctly uses [tex]\( b \approx 12 \)[/tex] to solve for [tex]\( a \)[/tex] is:
[tex]\[ \tan(22.6^\circ) = \frac{a}{12} \][/tex]

### Conclusion

The correct equation that uses the value of [tex]\( b \approx 12 \)[/tex] to solve for [tex]\( a \)[/tex] is:
[tex]\[ \tan(22.6^\circ) = \frac{a}{12} \][/tex]

Thus, the correct answer is:
[tex]\[ \tan(22.6^\circ) = \frac{a}{12} \][/tex]