Answer :
To find the output value [tex]\( y \)[/tex] of the function [tex]\( y = -3x + 11 \)[/tex] when the input value [tex]\( x \)[/tex] is [tex]\(-8\)[/tex], follow these steps:
1. Start with the given function:
[tex]\[ y = -3x + 11 \][/tex]
2. Substitute the input value [tex]\( x = -8 \)[/tex] into the function:
[tex]\[ y = -3(-8) + 11 \][/tex]
3. Evaluate the multiplication [tex]\( -3 \times (-8) \)[/tex]:
[tex]\[ -3 \times (-8) = 24 \][/tex]
4. Add this result to [tex]\( 11 \)[/tex]:
[tex]\[ y = 24 + 11 \][/tex]
5. Perform the addition:
[tex]\[ 24 + 11 = 35 \][/tex]
Therefore, the output value [tex]\( y \)[/tex] when the input value [tex]\( x \)[/tex] is [tex]\(-8\)[/tex] is [tex]\( 35 \)[/tex].
1. Start with the given function:
[tex]\[ y = -3x + 11 \][/tex]
2. Substitute the input value [tex]\( x = -8 \)[/tex] into the function:
[tex]\[ y = -3(-8) + 11 \][/tex]
3. Evaluate the multiplication [tex]\( -3 \times (-8) \)[/tex]:
[tex]\[ -3 \times (-8) = 24 \][/tex]
4. Add this result to [tex]\( 11 \)[/tex]:
[tex]\[ y = 24 + 11 \][/tex]
5. Perform the addition:
[tex]\[ 24 + 11 = 35 \][/tex]
Therefore, the output value [tex]\( y \)[/tex] when the input value [tex]\( x \)[/tex] is [tex]\(-8\)[/tex] is [tex]\( 35 \)[/tex].