To find the output value of the function [tex]\( y = -6x + 19 \)[/tex] when the input value [tex]\( x \)[/tex] is 6, we can follow a series of steps:
1. Identify the given function and the input value:
- The function is [tex]\( y = -6x + 19 \)[/tex].
- The input value for [tex]\( x \)[/tex] is 6.
2. Substitute the input value into the function:
- Substitute [tex]\( x = 6 \)[/tex] into the equation [tex]\( y = -6x + 19 \)[/tex].
3. Perform the arithmetic operations:
- Calculate the product of [tex]\(-6x\)[/tex] where [tex]\( x = 6 \)[/tex]:
[tex]\[
-6 \times 6 = -36
\][/tex]
- Next, add 19 to the result obtained:
[tex]\[
-36 + 19 = -17
\][/tex]
Therefore, the output value of the function [tex]\( y \)[/tex] when [tex]\( x = 6 \)[/tex] is [tex]\(\boxed{-17}\)[/tex].