Evaluate the expression and check all that apply.

The expression is:
A. [tex]\(\frac{s}{8}\)[/tex]
B. [tex]\(\frac{18}{s}\)[/tex]
C. [tex]\(\frac{s}{3}\)[/tex]
D. [tex]\(\frac{3}{s}\)[/tex]

The answer is:
A. [tex]\(\frac{1}{6}\)[/tex]
B. 6



Answer :

Sure, let's go through the problem step by step and evaluate each expression given that [tex]\( s = 18 \)[/tex].

### Step 1: Evaluate [tex]\(\frac{s}{8}\)[/tex]
We start by substituting [tex]\( s = 18 \)[/tex] into the expression:
[tex]\[ \frac{s}{8} = \frac{18}{8} \][/tex]
Simplify the fraction:
[tex]\[ \frac{18}{8} = 2.25 \][/tex]

### Step 2: Evaluate [tex]\(\frac{18}{s}\)[/tex]
Substitute [tex]\( s = 18 \)[/tex]:
[tex]\[ \frac{18}{s} = \frac{18}{18} \][/tex]
Simplify the fraction:
[tex]\[ \frac{18}{18} = 1 \][/tex]

### Step 3: Evaluate [tex]\(\frac{s}{3}\)[/tex]
Substitute [tex]\( s = 18 \)[/tex]:
[tex]\[ \frac{s}{3} = \frac{18}{3} \][/tex]
Simplify the fraction:
[tex]\[ \frac{18}{3} = 6 \][/tex]

### Step 4: Evaluate [tex]\(\frac{3}{s}\)[/tex]
Substitute [tex]\( s = 18 \)[/tex]:
[tex]\[ \frac{3}{s} = \frac{3}{18} \][/tex]
Simplify the fraction:
[tex]\[ \frac{3}{18} = \frac{1}{6} \][/tex]

### Step 5: Validate the given answers
Let's look at the given answers and check if they match with our evaluated expressions:

1. The given answer [tex]\(\frac{1}{6}\)[/tex] matches our evaluation of [tex]\(\frac{3}{s}\)[/tex].
2. The given answer [tex]\(6\)[/tex] matches our evaluation of [tex]\(\frac{s}{3}\)[/tex].

Therefore, the evaluated expressions and the given answers are:
- [tex]\(\frac{s}{8} = 2.25\)[/tex]
- [tex]\(\frac{18}{s} = 1\)[/tex]
- [tex]\(\frac{s}{3} = 6\)[/tex]
- [tex]\(\frac{3}{s} = \frac{1}{6}\)[/tex]
- The answer [tex]\(\frac{1}{6}\)[/tex]
- The answer [tex]\(6\)[/tex]

So the steps confirm the expressions and the given answers accurately:
[tex]\[ \text{Correct Evaluations:} (2.25, 1, 6, 0.16666666666666666, 0.16666666666666666, 6) \][/tex]