Solve [tex]\( x^2 + 2x = 1 \)[/tex] for [tex]\( x \)[/tex] by completing the square.

A. [tex]\( x = -1 \pm \sqrt{2} \)[/tex]

B. [tex]\( x = 1 \pm \sqrt{2} \)[/tex]

C. [tex]\( x = 2 \)[/tex]

D. [tex]\( x = 0 \)[/tex]



Answer :

To solve the quadratic equation [tex]\( x^2 + 2x = 1 \)[/tex] by completing the square, we will follow these steps:

1. Move the constant term to the left side:
[tex]\[ x^2 + 2x - 1 = 0 \][/tex]

2. Complete the square:

For the quadratic term [tex]\( x^2 + 2x \)[/tex], we complete the square by finding a value that makes it a perfect square trinomial. Here, we focus on the term [tex]\( x^2 + 2x \)[/tex].

The formula to complete the square for [tex]\( ax^2 + bx \)[/tex] is [tex]\( x^2 + bx = (x + \frac{b}{2})^2 - (\frac{b}{2})^2 \)[/tex]. For our equation [tex]\( x^2 + 2x \)[/tex]:

- The coefficient [tex]\( b \)[/tex] is 2.
- Calculate [tex]\( \left( \frac{2}{2} \right)^2 = 1 \)[/tex].

Thus,
[tex]\[ x^2 + 2x = (x + 1)^2 - 1 \][/tex]

3. Rewrite the equation:

Substitute this back into the equation [tex]\( x^2 + 2x - 1 = 0 \)[/tex]:
[tex]\[ (x + 1)^2 - 1 - 1 = 0 \][/tex]
Simplify:
[tex]\[ (x + 1)^2 - 2 = 0 \][/tex]

4. Isolate the perfect square:
[tex]\[ (x + 1)^2 = 2 \][/tex]

5. Solve for [tex]\( x \)[/tex]:

Take the square root of both sides:
[tex]\[ x + 1 = \pm \sqrt{2} \][/tex]

Solve for [tex]\( x \)[/tex]:
[tex]\[ x = -1 \pm \sqrt{2} \][/tex]

Hence, we have two solutions:
[tex]\[ x = -1 + \sqrt{2} \quad \text{and} \quad x = -1 - \sqrt{2} \][/tex]

6. Match these solutions with the given choices:

- [tex]\( x = \sqrt{2} - 1 \)[/tex]
- [tex]\( x = -\sqrt{2} - 1 \)[/tex]
- [tex]\( x = \sqrt{2} + 1 \)[/tex]
- [tex]\( x = -\sqrt{2} + 1 \)[/tex]
- [tex]\( x = 2 \)[/tex]
- [tex]\( x = 0 \)[/tex]

The solutions we found [tex]\( x = -1 + \sqrt{2} \)[/tex] and [tex]\( x = -1 - \sqrt{2} \)[/tex] match with:

[tex]\[ x = \sqrt{2} - 1 \quad \text{(same as \( -1 + \sqrt{2} \))} \][/tex]
[tex]\[ x = -\sqrt{2} - 1 \quad \text{(same as \( -1 - \sqrt{2} \))} \][/tex]

Therefore, the correct answers are:
[tex]\[ x = \sqrt{2} - 1 \quad \text{and} \quad x = -\sqrt{2} - 1 \][/tex]