If the formula [tex]\(\bar{x}=\frac{1}{n} \sum_{i=1}^n x_i\)[/tex] is used to find the mean of the following sample, what is the value of [tex]\(n\)[/tex]?

Sample: 2, 63, 88, 10, 72, 99, 38

A. 6
B. 5
C. 7
D. 8



Answer :

To find the mean [tex]\(\bar{x}\)[/tex] of a sample using the formula [tex]\(\bar{x}=\frac{1}{n} \sum_{i=1}^n x_i\)[/tex], we need to determine the number of elements in the sample, which is represented by [tex]\(n\)[/tex].

Let’s identify each step required to find the sample size [tex]\(n\)[/tex]:

1. List the sample values: [tex]\(2, 63, 88, 10, 72, 99, 38\)[/tex].
2. Count the number of values in the sample.

[tex]\[ \begin{array}{c} 2, \ 63, \ 88, \ 10, \ 72, \ 99, \ 38 \end{array} \][/tex]

There are 7 values in the sample.

Thus, the value of [tex]\(n\)[/tex] is:

[tex]\[ n = 7 \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{7} \][/tex]