Select the correct answer.

The table gives the probability distribution of the annual rate of return on the stock of MNP Company, Inc. What is the expected value of the rate of return?

\begin{tabular}{|c|c|}
\hline Annual Return & Probability \\
\hline [tex][tex]$20 \%$[/tex][/tex] & 0.5 \\
\hline [tex][tex]$15 \%$[/tex][/tex] & 0.3 \\
\hline [tex][tex]$10 \%$[/tex][/tex] & 0.2 \\
\hline
\end{tabular}

A. [tex][tex]$10 \%$[/tex][/tex]
B. [tex][tex]$16.5 \%$[/tex][/tex]
C. [tex][tex]$22.5 \%$[/tex][/tex]
D. [tex][tex]$45 \%$[/tex][/tex]



Answer :

To solve this problem, we need to find the expected value of the annual rate of return. The expected value [tex]\( E(X) \)[/tex] is calculated by multiplying each possible return by its probability and then summing up those products.

The formula for expected value [tex]\( E(X) \)[/tex] is:
[tex]\[ E(X) = \sum (x_i \cdot p_i) \][/tex]
where:
- [tex]\( x_i \)[/tex] is the return,
- [tex]\( p_i \)[/tex] is the probability of that return.

Let's break this down step-by-step.

1. Identify the returns and their probabilities:
- The return of [tex]\( 20\% \)[/tex] has a probability of [tex]\( 0.5 \)[/tex].
- The return of [tex]\( 15\% \)[/tex] has a probability of [tex]\( 0.3 \)[/tex].
- The return of [tex]\( 10\% \)[/tex] has a probability of [tex]\( 0.2 \)[/tex].

2. Convert the percentages to decimals for calculation:
- [tex]\( 20\% \)[/tex] is [tex]\( 0.2 \)[/tex].
- [tex]\( 15\% \)[/tex] is [tex]\( 0.15 \)[/tex].
- [tex]\( 10\% \)[/tex] is [tex]\( 0.1 \)[/tex].

3. Calculate the expected value by multiplying each return by its probability, and then summing the results:

[tex]\[ E(X) = (0.2 \times 0.5) + (0.15 \times 0.3) + (0.1 \times 0.2) \][/tex]

Perform the individual multiplications:
- [tex]\( 0.2 \times 0.5 = 0.1 \)[/tex]
- [tex]\( 0.15 \times 0.3 = 0.045 \)[/tex]
- [tex]\( 0.1 \times 0.2 = 0.02 \)[/tex]

4. Sum the products:

[tex]\[ E(X) = 0.1 + 0.045 + 0.02 = 0.165 \][/tex]

To express this expected value as a percentage, multiply by 100:

[tex]\[ 0.165 \times 100 = 16.5\% \][/tex]

Therefore, the expected value of the rate of return for the MNP Company, Inc. stock is:

[tex]\[ \boxed{16.5\%} \][/tex]

Hence, the correct answer is [tex]\( \boxed{B} \)[/tex].