What is the justification for step 3 in the solution process?
[tex]\[0.8a - 0.1a = a - 2.5\][/tex]

Step 1: [tex]\[0.7a = a - 2.5\][/tex]
Step 2: [tex]\[-0.3a = -2.5\][/tex]
Step 3: [tex]\[a = 8.\overline{3}\][/tex]

A. The addition property of equality
B. The subtraction property of equality
C. Combining like terms
D. The division property of equality



Answer :

Let's analyze the given equation step-by-step and determine the justification for step 3.

Given equation:
[tex]\[ 0.8a - 0.1a = a - 2.5 \][/tex]

Step 1: Combine the like terms on the left side.
[tex]\[ (0.8 - 0.1)a = 0.7a \][/tex]
This simplifies the equation to:
[tex]\[ 0.7a = a - 2.5 \][/tex]
Justification: C. combining like terms

Step 2: To isolate the term involving [tex]\( a \)[/tex] on one side, we subtract [tex]\( a \)[/tex] from both sides:
[tex]\[ 0.7a - a = -2.5 \][/tex]
Simplify the left side by combining like terms:
[tex]\[ (0.7 - 1)a = -0.3a \][/tex]
Thus, the equation becomes:
[tex]\[ -0.3a = -2.5 \][/tex]
Justification: B. the subtraction property of equality

Step 3: To solve for [tex]\( a \)[/tex], we divide both sides by [tex]\( -0.3 \)[/tex]:
[tex]\[ a = \frac{-2.5}{-0.3} \][/tex]
Simplify the fraction:
[tex]\[ a = \frac{2.5}{0.3} = 8.33 \text{ or } 8. \overline{3} \][/tex]
Justification: D. the division property of equality

Therefore, the correct justification for step 3 is:

[tex]\[ \boxed{D. \text{the division property of equality}} \][/tex]