What is the solution for [tex][tex]$x$[/tex][/tex]?

[tex]\[ -3x + 7x - 8 = 34 + 9x - 2 \][/tex]

A. [tex][tex]$x = \frac{1}{8}$[/tex][/tex]
B. [tex][tex]$x = 8$[/tex][/tex]
C. [tex][tex]$x = -8$[/tex][/tex]
D. [tex][tex]$x = -\frac{1}{8}$[/tex][/tex]



Answer :

To solve the equation [tex]\(-3x + 7x - 8 = 34 + 9x - 2\)[/tex], follow these steps:

1. Combine like terms on each side of the equation:
[tex]\[ (-3x + 7x) - 8 = (34 - 2) + 9x \][/tex]
Simplifying within the parentheses:
[tex]\[ 4x - 8 = 32 + 9x \][/tex]

2. Move all terms involving [tex]\(x\)[/tex] to one side of the equation and constant terms to the other side:
Subtract [tex]\(9x\)[/tex] from both sides to start isolating [tex]\(x\)[/tex]:
[tex]\[ 4x - 9x - 8 = 32 \][/tex]
Simplifying the [tex]\(x\)[/tex]-terms:
[tex]\[ -5x - 8 = 32 \][/tex]

3. Isolate the [tex]\(x\)[/tex]-term by adding 8 to both sides:
[tex]\[ -5x = 32 + 8 \][/tex]
Simplifying the constants:
[tex]\[ -5x = 40 \][/tex]

4. Solve for [tex]\(x\)[/tex] by dividing both sides by -5:
[tex]\[ x = \frac{40}{-5} \][/tex]
[tex]\[ x = -8 \][/tex]

Therefore, the solution is:
[tex]\(\boxed{-8}\)[/tex]

The correct answer is:
C. [tex]\( x = -8 \)[/tex]