A simple random sample of size [tex][tex]$n$[/tex][/tex] is drawn from a normally distributed population. The mean of the sample is [tex][tex]$\bar{x}$[/tex][/tex], and the standard deviation is [tex][tex]$s$[/tex][/tex].

What is the [tex][tex]$90\%$[/tex][/tex] confidence interval for the population mean?

Use the table below to help you answer the question.

\begin{tabular}{|c|c|c|c|}
\hline Confidence Level & [tex][tex]$90\%$[/tex][/tex] & [tex][tex]$95\%$[/tex][/tex] & [tex][tex]$99\%$[/tex][/tex] \\
\hline [tex][tex]$z^*$[/tex][/tex]-score & 1.645 & 1.96 & 2.58 \\
\hline
\end{tabular}

A. [tex][tex]$\bar{x} \pm \frac{0.90 \cdot s}{\sqrt{n}}$[/tex][/tex]

B. [tex][tex]$\bar{x} \pm \frac{1.645 \cdot s}{\sqrt{n}}$[/tex][/tex]

C. [tex][tex]$\bar{x} \pm \frac{1.96 \cdot s}{\sqrt{n}}$[/tex][/tex]

D. [tex][tex]$\bar{x} \pm \frac{2.58 \cdot s}{\sqrt{n}}$[/tex][/tex]



Answer :

To determine the 90% confidence interval for the population mean when a simple random sample is drawn from a normally distributed population, follow these steps:

1. Identify the Given Values:
- Sample size [tex]\( n = 85 \)[/tex]
- Sample mean [tex]\( \bar{x} = 22 \)[/tex]
- Sample standard deviation [tex]\( s = 13 \)[/tex]
- [tex]\( z^* \)[/tex] value for a 90% confidence level, which from the table is [tex]\( 1.645 \)[/tex]

2. Calculate the Margin of Error:
The margin of error (E) is given by:
[tex]\[ E = z^* \cdot \left(\frac{s}{\sqrt{n}}\right) \][/tex]
Plugging in the given values:
[tex]\[ E = 1.645 \cdot \left(\frac{13}{\sqrt{85}}\right) \approx 2.3195289202259812 \][/tex]

3. Determine the Confidence Interval:
The confidence interval is calculated by adding and subtracting the margin of error from the sample mean.

- Lower bound:
[tex]\[ \text{Lower bound} = \bar{x} - E = 22 - 2.3195289202259812 \approx 19.68047107977402 \][/tex]

- Upper bound:
[tex]\[ \text{Upper bound} = \bar{x} + E = 22 + 2.3195289202259812 \approx 24.31952892022598 \][/tex]

4. State the Confidence Interval:
Therefore, the 90% confidence interval for the population mean is approximately:
[tex]\[ (19.68047107977402, 24.31952892022598) \][/tex]

This interval means that we are 90% confident that the true population mean falls within the range [tex]\( 19.68047107977402 \)[/tex] to [tex]\( 24.31952892022598 \)[/tex].