A triangle has vertices at [tex][tex]$L(2,2)$[/tex][/tex], [tex][tex]$M(4,4)$[/tex][/tex], and [tex][tex]$N(1,6)$[/tex][/tex]. The triangle is transformed according to the rule [tex][tex]$R_{0,180^{\circ}}$[/tex][/tex].

Which statements are true regarding the transformation? Select three options.

A. The rule for the transformation is [tex][tex]$(x, y) \rightarrow (-x, -y)$[/tex][/tex].
B. The coordinates of [tex][tex]$L^{\prime}$[/tex][/tex] are [tex][tex]$(-2,-2)$[/tex][/tex].
C. The coordinates of [tex][tex]$M^{\prime}$[/tex][/tex] are [tex][tex]$(-4,4)$[/tex][/tex].
D. The coordinates of [tex][tex]$N^{\prime}$[/tex][/tex] are [tex][tex]$(6,-1)$[/tex][/tex].
E. The coordinates of [tex][tex]$N^{\prime}$[/tex][/tex] are [tex][tex]$(-1,-6)$[/tex][/tex].



Answer :

Certainly, let's go through this step-by-step to determine the coordinates after the transformation and assess the statements given.

1. First, we need to apply the transformation rule [tex]\( R_{0, 180^\circ} \)[/tex] which states that any point [tex]\((x, y)\)[/tex] is transformed to [tex]\((-x, -y)\)[/tex].

2. Let's transform each vertex of the triangle accordingly:

- For vertex [tex]\( L(2, 2) \)[/tex]:
[tex]\[ L' = (-2, -2) \][/tex]

- For vertex [tex]\( M(4, 4) \)[/tex]:
[tex]\[ M' = (-4, -4) \][/tex]

- For vertex [tex]\( N(1, 6) \)[/tex]:
[tex]\[ N' = (-1, -6) \][/tex]

3. Now, let's compare the transformed coordinates with the given statements:

- The rule for the transformation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex]: This is indeed the correct rule for a 180° rotation about the origin. Thus, this statement is true.

- The coordinates of [tex]\( L'\)[/tex] are [tex]\((-2, -2)\)[/tex]: According to our transformation, this statement is true.

- The coordinates of [tex]\( M'\)[/tex] are [tex]\((-4, 4)\)[/tex]: According to our transformation, this statement is false. The coordinates of [tex]\( M'\)[/tex] should be [tex]\((-4, -4)\)[/tex].

- The coordinates of [tex]\( N'\)[/tex] are [tex]\((6, -1)\)[/tex]: According to our transformation, this statement is false. The coordinates of [tex]\( N'\)[/tex] should be [tex]\((-1, -6)\)[/tex].

- The coordinates of [tex]\( N'\)[/tex] are [tex]\((-1, -6)\)[/tex]: According to our transformation, this statement is true.

4. Therefore, the three correct statements are:

- The rule for the transformation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex].
- The coordinates of [tex]\( L'\)[/tex] are [tex]\((-2, -2)\)[/tex].
- The coordinates of [tex]\( N'\)[/tex] are [tex]\((-1, -6)\)[/tex].