Sure! Let's simplify the given expression step by step:
Given expression: [tex]\( 10m + 4(5 - 2m) \)[/tex]
1. First, we'll distribute the [tex]\(4\)[/tex] across the terms inside the parentheses.
[tex]\[ 4 \times 5 - 4 \times 2m \][/tex]
2. Calculating these products, we get:
[tex]\[ 20 - 8m \][/tex]
3. Now substitute back into the expression:
[tex]\[ 10m + 20 - 8m \][/tex]
4. Next, we combine like terms. The like terms here are [tex]\(10m\)[/tex] and [tex]\(-8m\)[/tex]:
[tex]\[ 10m - 8m \][/tex]
5. Combine these like terms:
[tex]\[ (10 - 8)m \][/tex]
6. This simplifies to:
[tex]\[ 2m \][/tex]
7. Our expression is now:
[tex]\[ 2m + 20 \][/tex]
So, the simplified form of the expression [tex]\( 10m + 4(5 - 2m) \)[/tex] is [tex]\( 2m + 20 \)[/tex].
Thus, the intermediate result during the simplification was:
[tex]\[ 10m + 20 - 8m \][/tex]
And the final simplified result is:
[tex]\[ 2m + 20 \][/tex]