Add. Express your answer as a fraction.

[tex]\[ 5 \frac{1}{4} + 15.5 = \][/tex]

[tex][tex]$\square$[/tex][/tex]



Answer :

To solve the given problem and express the answer as a fraction, we need to follow these steps:

1. Convert the mixed number [tex]\( 5 \frac{1}{4} \)[/tex] to an improper fraction:

First, multiply the whole number part (5) by the denominator (4) of the fractional part:
[tex]\[ 5 \times 4 = 20 \][/tex]

Then, add the numerator (1) of the fractional part to this result:
[tex]\[ 20 + 1 = 21 \][/tex]

So, [tex]\( 5 \frac{1}{4} \)[/tex] can be written as the improper fraction [tex]\( \frac{21}{4} \)[/tex].

2. Convert the decimal number [tex]\( 15.5 \)[/tex] to a fraction:

Since [tex]\( 15.5 \)[/tex] is equivalent to [tex]\( 15 \frac{1}{2} \)[/tex], first express [tex]\( 0.5 \)[/tex] as a fraction:
[tex]\[ 15.5 = 15 + 0.5 = 15 + \frac{1}{2} \][/tex]

Convert [tex]\( 15 \frac{1}{2} \)[/tex] to an improper fraction:
[tex]\[ 15 \frac{1}{2} = \frac{30 + 1}{2} = \frac{31}{2} \][/tex]

3. Find a common denominator:

The least common multiple (LCM) of the denominators 4 and 2 is 4.

Convert [tex]\( \frac{31}{2} \)[/tex] to a fraction with a denominator of 4:
[tex]\[ \frac{31}{2} = \frac{31 \times 2}{2 \times 2} = \frac{62}{4} \][/tex]

4. Add the two fractions:

Now add [tex]\( \frac{21}{4} \)[/tex] and [tex]\( \frac{62}{4} \)[/tex]:
[tex]\[ \frac{21}{4} + \frac{62}{4} = \frac{21 + 62}{4} = \frac{83}{4} \][/tex]

5. Express the final fraction:

The result of the addition is:
[tex]\[ 5 \frac{1}{4} + 15.5 = \frac{83}{4} \][/tex]

So, the answer is [tex]\(\boxed{\frac{83}{4}}\)[/tex].