Select the correct answer.

Which of the following functions is the inverse of this function?

[tex]\[ f(x)=\frac{x+2}{7} \][/tex]

A. [tex]\[ p(x)=7x-2 \][/tex]

B. [tex]\[ q(x)=\frac{-x+2}{7} \][/tex]

C. [tex]\[ r(x)=\frac{7}{x+2} \][/tex]

D. [tex]\[ s(x)=2x+7 \][/tex]



Answer :

Certainly! To find the inverse of the given function [tex]\( f(x) = \frac{x + 2}{7} \)[/tex], follow these steps:

1. Express the function with [tex]\( y \)[/tex] instead of [tex]\( f(x) \)[/tex]:
[tex]\[ y = \frac{x + 2}{7} \][/tex]

2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to find the inverse function:
[tex]\[ x = \frac{y + 2}{7} \][/tex]

3. Solve for [tex]\( y \)[/tex] to find the inverse function:
[tex]\[ x = \frac{y + 2}{7} \][/tex]
Multiply both sides by 7 to isolate [tex]\( y + 2 \)[/tex]:
[tex]\[ 7x = y + 2 \][/tex]
Subtract 2 from both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = 7x - 2 \][/tex]

Thus, the inverse function is [tex]\( p(x) = 7x - 2 \)[/tex].

Given the options:
A. [tex]\( p(x) = 7x - 2 \)[/tex]
B. [tex]\( q(x) = \frac{-x + 2}{7} \)[/tex]
C. [tex]\( r(x) = \frac{7}{x + 2} \)[/tex]
D. [tex]\( s(x) = 2x + 7 \)[/tex]

Option A, [tex]\( p(x) = 7x - 2 \)[/tex], is the correct inverse function of [tex]\( f(x) = \frac{x + 2}{7} \)[/tex].

Therefore, the correct answer is:
A. [tex]\( p(x) = 7x - 2 \)[/tex]