Using the order of operations, what is the last calculation that should be done to evaluate [tex][tex]$4(8-6) 5^2-6 \div(-3)$[/tex][/tex]?

[tex]\[
\begin{array}{l}
4(8-6) 5^2-6+(-3) \\
4(2) 5^2-6+(-3) \\
4(2)(25)-6 \div(-3) \\
200-6 \div(-3) \\
200-(-2)
\end{array}
\][/tex]

A. Multiply 200 and -2
B. Add 200 and -2
C. Add 200 and 2
D. Divide 200 and -2



Answer :

To solve the expression [tex]\(4(8-6) \cdot 5^2 - 6 \div (-3)\)[/tex] using the order of operations (PEMDAS/BODMAS), let's break it down step-by-step.

1. Parentheses/Brackets: Solve the operations inside parentheses first.
[tex]\[ 4(8-6) \cdot 5^2 - 6 \div (-3) \][/tex]
[tex]\[ = 4 \cdot 2 \cdot 5^2 - 6 \div (-3) \][/tex]

2. Exponents/Orders: Calculate the exponent next.
[tex]\[ = 4 \cdot 2 \cdot 25 - 6 \div (-3) \][/tex]

3. Multiplication/Division: Perform multiplication and division from left to right.
[tex]\[ = 4 \cdot 2 \cdot 25 - 6 \div (-3) \][/tex]
[tex]\[ = 200 - 6 \div (-3) \][/tex]

Divide [tex]\(6\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[ = 200 - (-2) \][/tex]

4. Addition/Subtraction: Finally, perform the addition or subtraction.
[tex]\[ = 200 + 2 \][/tex]

The last operation to do is to add [tex]\(200\)[/tex] and [tex]\(2\)[/tex]. Therefore, the last calculation that should be done to evaluate the expression is:

[tex]\[ \text{Add } 200 \text{ and } 2 \][/tex]