Solve the system of equations using elimination.

[tex]\[
\begin{array}{l}
-3x + 2y = 9 \\
x + y = 12
\end{array}
\][/tex]

A. [tex]\(( -3, 0)\)[/tex]
B. [tex]\((1, 6)\)[/tex]
C. [tex]\((3, 9)\)[/tex]
D. [tex]\((5, 7)\)[/tex]



Answer :

Certainly! Let's solve the given system of equations using the elimination method. The system of equations is:

[tex]\[ \begin{array}{l} -3x + 2y = 9 \\ x + y = 12 \end{array} \][/tex]

### Step-by-Step Solution

1. Label the equations for reference:

[tex]\[ \begin{array}{l} -3x + 2y = 9 \quad \text{(Equation 1)} \\ x + y = 12 \quad \text{(Equation 2)} \end{array} \][/tex]

2. Eliminate one variable:
To eliminate [tex]\(x\)[/tex], we can multiply Equation 2 by 3 so that the coefficients of [tex]\(x\)[/tex] will be opposites. This will allow us to add the equations and eliminate [tex]\(x\)[/tex].

[tex]\[ 3(x + y) = 3 \cdot 12 \][/tex]

Simplifying, we get:

[tex]\[ 3x + 3y = 36 \quad \text{(Equation 3)} \][/tex]

3. Add Equation 1 and Equation 3:

[tex]\[ \begin{array}{rcl} -3x + 2y & = & 9 \\ 3x + 3y & = & 36 \\ \hline 0x + 5y & = & 45 \end{array} \][/tex]

Simplifying, we get:

[tex]\[ 5y = 45 \][/tex]

Solving for [tex]\(y\)[/tex]:

[tex]\[ y = \frac{45}{5} = 9 \][/tex]

4. Substitute [tex]\(y\)[/tex] back into one of the original equations to solve for [tex]\(x\)[/tex]:
We can use Equation 2:

[tex]\[ x + y = 12 \][/tex]

Substituting [tex]\(y = 9\)[/tex]:

[tex]\[ x + 9 = 12 \][/tex]

Solving for [tex]\(x\)[/tex]:

[tex]\[ x = 12 - 9 = 3 \][/tex]

### Solution
The solution to the system of equations is [tex]\((x, y) = (3, 9)\)[/tex].

So, the correct answer is:
[tex]\[ (3, 9) \][/tex]

Therefore, among the given choices:
- [tex]\((-3, 0)\)[/tex]
- [tex]\((1, 6)\)[/tex]
- [tex]\((3, 9)\)[/tex]
- [tex]\((5, 7)\)[/tex]

The correct solution is [tex]\((3, 9)\)[/tex].