Consider functions [tex][tex]$f$[/tex][/tex] and [tex][tex]$g$[/tex][/tex].

[tex]\[
\begin{array}{l}
f(x)=(x+1)^3 \\
g(x)=\sqrt[3]{x}+1
\end{array}
\][/tex]

Evaluate the function composition.

[tex]\[
(f \circ g)(-64)= \, \boxed{\phantom{}}
\][/tex]



Answer :

To evaluate the function composition [tex]\((f \circ g)(-64)\)[/tex], we need to follow these steps:

1. First, evaluate [tex]\(g\)[/tex] at [tex]\(-64\)[/tex]:
[tex]\[ g(x) = \sqrt[3]{x} + 1 \][/tex]
Substitute [tex]\(-64\)[/tex] for [tex]\(x\)[/tex]:
[tex]\[ g(-64) = \sqrt[3]{-64} + 1 \][/tex]

2. Calculate [tex]\(\sqrt[3]{-64}\)[/tex]:
[tex]\[ \sqrt[3]{-64} = -4 \][/tex]
Therefore, substituting this value back into the function [tex]\(g\)[/tex]:
[tex]\[ g(-64) = -4 + 1 = -3 \][/tex]
So, [tex]\(g(-64) = -3\)[/tex].

3. Next, use this result to evaluate [tex]\(f\)[/tex] at [tex]\(-3\)[/tex]:
[tex]\[ f(x) = (x + 1)^3 \][/tex]
Substitute [tex]\(-3\)[/tex] for [tex]\(x\)[/tex]:
[tex]\[ f(-3) = (-3 + 1)^3 = (-2)^3 = -8 \][/tex]
So, [tex]\(f(g(-64)) = f(-3) = -8\)[/tex].

After evaluating these steps, we obtain [tex]\((f \circ g)(-64) = -8\)[/tex].