On a number line, the directed line segment from [tex][tex]$Q$[/tex][/tex] to [tex][tex]$S$[/tex][/tex] has endpoints [tex][tex]$Q$[/tex][/tex] at -14 and [tex][tex]$S$[/tex][/tex] at 2. Point [tex][tex]$R$[/tex][/tex] partitions the directed line segment from [tex][tex]$Q$[/tex][/tex] to [tex][tex]$S$[/tex][/tex] in a [tex][tex]$3: 5$[/tex][/tex] ratio.

Which expression correctly uses the formula [tex][tex]$\left(\frac{m}{m+n}\right)\left(x_2-x_1\right)+x_1$[/tex][/tex] to find the location of point [tex][tex]$R$[/tex][/tex]?

A. [tex][tex]$\left(\frac{3}{3+5}\right)(2-(-14))+(-14)$[/tex][/tex]

B. [tex][tex]$\left(\frac{3}{3+5}\right)(-14-2)+2$[/tex][/tex]

C. [tex][tex]$\left(\frac{3}{3+5}\right)(2-14)+14$[/tex][/tex]

D. [tex][tex]$\left(\frac{3}{3+5}\right)(-14-2)-2$[/tex][/tex]



Answer :

To solve this problem, we first identify the given elements and apply the correct formula. In this case, we are looking to find the location of point [tex]\( R \)[/tex] which partitions the directed line segment from [tex]\( Q \)[/tex] to [tex]\( S \)[/tex] in a [tex]\( 3:5 \)[/tex] ratio.

1. Identify the endpoints and ratio:
- [tex]\( Q \)[/tex] is at [tex]\(-14\)[/tex]
- [tex]\( S \)[/tex] is at [tex]\(2\)[/tex]
- The ratio [tex]\( m:n \)[/tex] is [tex]\( 3:5 \)[/tex]

2. Set up the formula:
The formula to find the point that partitions the segment in the given ratio is:
[tex]\[ \left(\frac{m}{m+n}\right)\left(x_2 - x_1\right) + x_1 \][/tex]
Where:
- [tex]\( m = 3 \)[/tex]
- [tex]\( n = 5 \)[/tex]
- [tex]\( x_1 = -14 \)[/tex]
- [tex]\( x_2 = 2 \)[/tex]

3. Substitute the values into the formula:
[tex]\[ \left(\frac{3}{3+5}\right)\left(2 - (-14)\right) + (-14) \][/tex]
Notice that the formula correctly aligns with the expression:
[tex]\[ \left(\frac{3}{3+5}\right)(2 - (-14)) + (-14) \][/tex]

Therefore, the correct expression is:
[tex]\[ \left(\frac{3}{3+5}\right)(2 - (-14)) + (-14) \][/tex]

Hence, the correct choice among the given options is:
[tex]\[ \left(\frac{3}{3+5}\right)(2 - (-14)) + (-14) \][/tex]