Answer :
To draw a frequency polygon for the given data, follow these steps:
1. Identify the income ranges and their corresponding frequencies:
[tex]\[ \begin{array}{|c|c|} \hline \text{Income (thousands)} & \text{Frequency} \\ \hline 0 < I \leq 20 & 40 \\ \hline 20 < I \leq 40 & 75 \\ \hline 40 < I \leq 60 & 64 \\ \hline 60 < I \leq 80 & 20 \\ \hline 80 < I \leq 100 & 1 \\ \hline \end{array} \][/tex]
2. Determine the midpoints for each income range:
- For [tex]\(0 < I \leq 20\)[/tex]: Midpoint = [tex]\((0 + 20) / 2 = 10\)[/tex]
- For [tex]\(20 < I \leq 40\)[/tex]: Midpoint = [tex]\((20 + 40) / 2 = 30\)[/tex]
- For [tex]\(40 < I \leq 60\)[/tex]: Midpoint = [tex]\((40 + 60) / 2 = 50\)[/tex]
- For [tex]\(60 < I \leq 80\)[/tex]: Midpoint = [tex]\((60 + 80) / 2 = 70\)[/tex]
- For [tex]\(80 < I \leq 100\)[/tex]: Midpoint = [tex]\((80 + 100) / 2 = 90\)[/tex]
Thus, the midpoints are: 10, 30, 50, 70, and 90.
3. Plot the midpoints vs. frequencies:
The points to be plotted are:
[tex]\[ (10, 40),\, (30, 75),\, (50, 64),\, (70, 20),\, (90, 1) \][/tex]
4. Draw the frequency polygon:
- Create a set of axes with the income midpoints on the horizontal axis (x-axis) and the frequencies on the vertical axis (y-axis).
- Plot the points [tex]\((10, 40)\)[/tex], [tex]\((30, 75)\)[/tex], [tex]\((50, 64)\)[/tex], [tex]\((70, 20)\)[/tex], and [tex]\((90, 1)\)[/tex].
- Connect the plotted points with straight lines to form the frequency polygon.
Below is a sketch representation of how the frequency polygon should look:
```
Frequency (y-axis)
|
|
|
| |
| |
| |
| | |
| | |
| | |
| |
| | | |
| | | |
| | | | *
| | | | |
| | | | |
| | | | |
|------------------------------------------- Income Midpoints (x-axis)
10 30 50 70 90
```
This is a simplified visual guide. Remember to label your axes and choose appropriate scales for accuracy when you plot the graph on paper or using graphing software.
1. Identify the income ranges and their corresponding frequencies:
[tex]\[ \begin{array}{|c|c|} \hline \text{Income (thousands)} & \text{Frequency} \\ \hline 0 < I \leq 20 & 40 \\ \hline 20 < I \leq 40 & 75 \\ \hline 40 < I \leq 60 & 64 \\ \hline 60 < I \leq 80 & 20 \\ \hline 80 < I \leq 100 & 1 \\ \hline \end{array} \][/tex]
2. Determine the midpoints for each income range:
- For [tex]\(0 < I \leq 20\)[/tex]: Midpoint = [tex]\((0 + 20) / 2 = 10\)[/tex]
- For [tex]\(20 < I \leq 40\)[/tex]: Midpoint = [tex]\((20 + 40) / 2 = 30\)[/tex]
- For [tex]\(40 < I \leq 60\)[/tex]: Midpoint = [tex]\((40 + 60) / 2 = 50\)[/tex]
- For [tex]\(60 < I \leq 80\)[/tex]: Midpoint = [tex]\((60 + 80) / 2 = 70\)[/tex]
- For [tex]\(80 < I \leq 100\)[/tex]: Midpoint = [tex]\((80 + 100) / 2 = 90\)[/tex]
Thus, the midpoints are: 10, 30, 50, 70, and 90.
3. Plot the midpoints vs. frequencies:
The points to be plotted are:
[tex]\[ (10, 40),\, (30, 75),\, (50, 64),\, (70, 20),\, (90, 1) \][/tex]
4. Draw the frequency polygon:
- Create a set of axes with the income midpoints on the horizontal axis (x-axis) and the frequencies on the vertical axis (y-axis).
- Plot the points [tex]\((10, 40)\)[/tex], [tex]\((30, 75)\)[/tex], [tex]\((50, 64)\)[/tex], [tex]\((70, 20)\)[/tex], and [tex]\((90, 1)\)[/tex].
- Connect the plotted points with straight lines to form the frequency polygon.
Below is a sketch representation of how the frequency polygon should look:
```
Frequency (y-axis)
|
|
|
| |
| |
| |
| | |
| | |
| | |
| |
| | | |
| | | |
| | | | *
| | | | |
| | | | |
| | | | |
|------------------------------------------- Income Midpoints (x-axis)
10 30 50 70 90
```
This is a simplified visual guide. Remember to label your axes and choose appropriate scales for accuracy when you plot the graph on paper or using graphing software.