To evaluate the expression [tex]\(4(2x - 1)\)[/tex] when [tex]\(x = 3\)[/tex] using the distributive property, follow these steps:
1. Substitute [tex]\(x\)[/tex] with 3:
First, replace [tex]\(x\)[/tex] in the expression with the value 3:
[tex]\[
4 \left( 2 \cdot 3 - 1 \right)
\][/tex]
2. Simplify inside the parentheses:
Perform the multiplication and subtraction inside the parentheses first:
[tex]\[
2 \cdot 3 = 6
\][/tex]
Thus, the expression becomes:
[tex]\[
4 (6 - 1)
\][/tex]
Then, subtract 1 from 6:
[tex]\[
6 - 1 = 5
\][/tex]
So now the expression is:
[tex]\[
4 \cdot 5
\][/tex]
3. Apply the multiplication:
Finally, multiply 4 by 5:
[tex]\[
4 \cdot 5 = 20
\][/tex]
Therefore, the value of [tex]\(4(2x - 1)\)[/tex] when [tex]\(x = 3\)[/tex] is [tex]\(20\)[/tex].