Answer :
To evaluate the expression [tex]\(4(2x - 1)\)[/tex] when [tex]\(x = 3\)[/tex] using the distributive property, follow these steps:
1. Substitute [tex]\(x\)[/tex] with 3:
First, replace [tex]\(x\)[/tex] in the expression with the value 3:
[tex]\[ 4 \left( 2 \cdot 3 - 1 \right) \][/tex]
2. Simplify inside the parentheses:
Perform the multiplication and subtraction inside the parentheses first:
[tex]\[ 2 \cdot 3 = 6 \][/tex]
Thus, the expression becomes:
[tex]\[ 4 (6 - 1) \][/tex]
Then, subtract 1 from 6:
[tex]\[ 6 - 1 = 5 \][/tex]
So now the expression is:
[tex]\[ 4 \cdot 5 \][/tex]
3. Apply the multiplication:
Finally, multiply 4 by 5:
[tex]\[ 4 \cdot 5 = 20 \][/tex]
Therefore, the value of [tex]\(4(2x - 1)\)[/tex] when [tex]\(x = 3\)[/tex] is [tex]\(20\)[/tex].
1. Substitute [tex]\(x\)[/tex] with 3:
First, replace [tex]\(x\)[/tex] in the expression with the value 3:
[tex]\[ 4 \left( 2 \cdot 3 - 1 \right) \][/tex]
2. Simplify inside the parentheses:
Perform the multiplication and subtraction inside the parentheses first:
[tex]\[ 2 \cdot 3 = 6 \][/tex]
Thus, the expression becomes:
[tex]\[ 4 (6 - 1) \][/tex]
Then, subtract 1 from 6:
[tex]\[ 6 - 1 = 5 \][/tex]
So now the expression is:
[tex]\[ 4 \cdot 5 \][/tex]
3. Apply the multiplication:
Finally, multiply 4 by 5:
[tex]\[ 4 \cdot 5 = 20 \][/tex]
Therefore, the value of [tex]\(4(2x - 1)\)[/tex] when [tex]\(x = 3\)[/tex] is [tex]\(20\)[/tex].