To solve for [tex]\( x \)[/tex] in the given equation:
[tex]\[
\frac{x}{y} - z = r \cdot w
\][/tex]
we will follow these steps:
1. Isolate the term involving [tex]\( x \)[/tex]:
[tex]\[
\frac{x}{y} = r \cdot w + z
\][/tex]
To achieve this, add [tex]\( z \)[/tex] to both sides of the equation:
[tex]\[
\frac{x}{y} - z + z = r \cdot w + z
\][/tex]
Simplifying, we get:
[tex]\[
\frac{x}{y} = r \cdot w + z
\][/tex]
2. Eliminate the denominator to solve for [tex]\( x \)[/tex]:
Multiply both sides of the equation by [tex]\( y \)[/tex]:
[tex]\[
x = y \cdot (r \cdot w + z)
\][/tex]
Thus, the solution for [tex]\( x \)[/tex] is:
[tex]\[
x = y \cdot (r \cdot w + z)
\][/tex]