To determine the value of [tex]\(VX\)[/tex], we need to follow these steps:
1. First, solve the equation [tex]\(TV = 3x - 24\)[/tex] for [tex]\(x\)[/tex].
2. Once we find the value of [tex]\(x\)[/tex], substitute this value into the equation [tex]\(VX = 2x + 1\)[/tex] to determine [tex]\(VX\)[/tex].
Let's begin with solving the first equation for [tex]\(x\)[/tex]:
[tex]\[ TV = 3x - 24 \][/tex]
To solve for [tex]\(x\)[/tex], we'll set [tex]\(TV\)[/tex] equal to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ 0 = 3x - 24 \][/tex]
We simplify by isolating [tex]\(x\)[/tex]:
[tex]\[ 3x = 24 \][/tex]
[tex]\[ x = \frac{24}{3} \][/tex]
[tex]\[ x = 8 \][/tex]
Now that we have [tex]\(x = 8\)[/tex], we can substitute this value into the equation for [tex]\(VX\)[/tex]:
[tex]\[ VX = 2x + 1 \][/tex]
Substitute [tex]\(x = 8\)[/tex] into the equation:
[tex]\[ VX = 2(8) + 1 \][/tex]
[tex]\[ VX = 16 + 1 \][/tex]
[tex]\[ VX = 17 \][/tex]
Therefore, the value of [tex]\(VX\)[/tex] is [tex]\(17\)[/tex].