Arrange the legs of Lori's family's road trip from lowest velocity to highest. Calculate the average velocity for each leg using the table below.

\begin{tabular}{|c|c|c|}
\hline
Leg & Distance [tex][tex]$( \text{km} )$[/tex][/tex] & Time [tex][tex]$( \text{min} )$[/tex][/tex] \\
\hline
A & 15 & 10 \\
\hline
B & 20 & 15 \\
\hline
C & 24 & 12 \\
\hline
D & 36 & 9 \\
\hline
E & 14 & 14 \\
\hline
\end{tabular}

[tex]\operatorname{leg} A[/tex]
[tex]\operatorname{leg} B[/tex]
[tex]\operatorname{leg} C[/tex]
[tex]\operatorname{leg} D[/tex]
[tex]\operatorname{leg} E[/tex]



Answer :

### Step-by-Step Solution

1. Calculate the average velocity for each leg of the trip:
To find the average velocity, we use the formula:
[tex]\[ \text{Average Velocity} = \frac{\text{Distance}}{\text{Time}} \times \frac{60}{1} \][/tex]
The multiplication by 60 is necessary to convert the time from minutes to hours.

- Leg A:
[tex]\[ \text{Average Velocity} = \frac{15 \text{ km}}{10 \text{ min}} \times \frac{60}{1} = 90 \text{ km/h} \][/tex]

- Leg B:
[tex]\[ \text{Average Velocity} = \frac{20 \text{ km}}{15 \text{ min}} \times \frac{60}{1} = 80 \text{ km/h} \][/tex]

- Leg C:
[tex]\[ \text{Average Velocity} = \frac{24 \text{ km}}{12 \text{ min}} \times \frac{60}{1} = 120 \text{ km/h} \][/tex]

- Leg D:
[tex]\[ \text{Average Velocity} = \frac{36 \text{ km}}{9 \text{ min}} \times \frac{60}{1} = 240 \text{ km/h} \][/tex]

- Leg E:
[tex]\[ \text{Average Velocity} = \frac{14 \text{ km}}{14 \text{ min}} \times \frac{60}{1} = 60 \text{ km/h} \][/tex]

2. Arrange the legs of the trip from the lowest velocity to the highest:

Based on the computed velocities:
- Leg E: 60 km/h
- Leg B: 80 km/h
- Leg A: 90 km/h
- Leg C: 120 km/h
- Leg D: 240 km/h

The order from the lowest velocity to the highest is:
[tex]\[ \boxed{\text{E, B, A, C, D}} \][/tex]