The table represents the function [tex][tex]$f(x)$[/tex][/tex].

\begin{tabular}{|c|c|}
\hline [tex][tex]$x$[/tex][/tex] & [tex][tex]$f ( x )$[/tex][/tex] \\
\hline -3 & -9 \\
\hline -2 & -6 \\
\hline -1 & -3 \\
\hline 0 & 0 \\
\hline 1 & 3 \\
\hline 2 & 6 \\
\hline 3 & 9 \\
\hline
\end{tabular}

What is [tex][tex]$f(3)$[/tex][/tex]?

A. [tex][tex]$-9$[/tex][/tex]
B. [tex][tex]$-1$[/tex][/tex]
C. 1
D. 9



Answer :

To find [tex]\( f(3) \)[/tex] using the given table, follow these steps:

1. Look at the first column in the table where the values of [tex]\(x\)[/tex] are listed.
2. Find the row where [tex]\(x = 3\)[/tex].
3. Once you locate [tex]\(x = 3\)[/tex] in the table, look at the corresponding value in the second column which represents [tex]\(f(x)\)[/tex].

According to the table, the row where [tex]\(x = 3\)[/tex] corresponds to [tex]\(f(x) = 9\)[/tex].

Thus, the value of [tex]\(f(3)\)[/tex] is [tex]\(9\)[/tex]. Therefore, the correct answer is:

[tex]\[ \boxed{9} \][/tex]