Identifying the values [tex][tex]$a, b$[/tex][/tex], and [tex][tex]$c$[/tex][/tex] is the first step in using the quadratic formula to find solution(s) to a quadratic equation. What are the values [tex][tex]$a, b$[/tex][/tex], and [tex][tex]$c$[/tex][/tex] in the following quadratic equation?

[tex]\[ -6x^2 = -9x + 7 \][/tex]

A. [tex][tex]$a=9, b=7, c=6$[/tex][/tex]
B. [tex][tex]$a=-9, b=7, c=-6$[/tex][/tex]
C. [tex][tex]$a=-6, b=9, c=-7$[/tex][/tex]
D. [tex][tex]$a=-6, b=-9, c=7$[/tex][/tex]



Answer :

To identify the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] for the quadratic equation [tex]\(-6x^2 = -9x + 7\)[/tex], we first need to rewrite it in the standard form of a quadratic equation, which is [tex]\(ax^2 + bx + c = 0\)[/tex].

Given:
[tex]\[ -6x^2 = -9x + 7 \][/tex]

First, let's move all the terms to one side of the equation to set it equal to zero:
[tex]\[ -6x^2 + 9x - 7 = 0 \][/tex]

Now, the equation is in the standard form [tex]\(ax^2 + bx + c = 0\)[/tex], where:
[tex]\[ a = -6, \quad b = 9, \quad c = -7 \][/tex]

Thus, the correct values are:
[tex]\[ a = -6, \quad b = 9, \quad c = -7 \][/tex]

So, the correct choice from the given options is:
[tex]\[ a = -6, b = 9, c = -7 \][/tex]